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Introduction to the SAT II

The SAT II Subject Tests are created and administered by the College Board and the 

Educational Testing Service (ETS), the two organizations responsible for producing the 

dreaded SAT I (which most people call the SAT). The SAT II Subject Tests were created to 

act as complements to the SAT I. Whereas the SAT I tests your critical thinking skills by 

asking math and verbal questions, the SAT II Subject Tests examine your knowledge of a 

particular subject, such as Writing, U.S. History, Physics, or Biology. The SAT I takes 

three hours; the Subject Tests take only one hour.

In our opinion, the SAT II Subject Tests are better tests than the SAT I because they cover 

a definitive topic rather than ambiguous critical thinking skills that are difficult to define. 

However, just because the SAT II Subject Tests do a better job of testing your knowledge 

of a useful subject doesn’t mean the tests are necessarily easier or demand less studying. 

A “better” test isn’t necessarily better for you in terms of how easy it will be.
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The Good

• Because SAT II Subject Tests cover specific topics such as Grammar, Chemistry, 

and Biology, you can study for them effectively. If you don’t know the structure of 

DNA, you can look it up and learn it. The SAT IIs are therefore straightforward 

tests: if you know your stuff, you’ll do fine. 

• Often, the classes you’ve taken in school have already prepared you well for the 

SAT IIs. If you’ve taken a Chemistry class, you’ve probably covered most of the 

topics that are tested on the SAT II Chemistry test. All you need is some 

refreshing and refocusing, which this book provides.

The Bad

• Because SAT II Subject Tests quiz you on specific knowledge, it is much harder to 

“beat” or “outsmart” an SAT II test than it is to outsmart the SAT I. For the SAT I, 

you can use all sorts of tricks and strategies to figure out an answer. There are far 

fewer strategies to help you on the SAT II. Don’t get us wrong: having test-taking 

skills will help you on an SAT II, but knowing the subject will help you much, 

much more. In other words, to do well on the SAT II, you can’t just rely on your 

quick thinking and intelligence. You need to study.

Colleges and the SAT II Subject Tests

We’re guessing you didn’t sign up to take the SAT II just for the sheer pleasure of it. You 

probably want to get into college and know that the only reason for taking this test is that 

colleges want or require you to do so.

Colleges care about SAT II Subject Tests for two reasons. First, the tests demonstrate 

your interest, knowledge, and skill in specific subjects. Second, because SAT II tests are 

standardized, they show how your knowledge of Chemistry (or History or Math) 

measures up to that of high school students nationwide. The grades you get in high school 

don’t offer such a measurement to colleges: some high schools are more difficult than 

others, and students of equal ability might receive different grades, even in classes with a 

relatively similar curriculum.

When it comes down to it, colleges like the SAT IIs because the tests make the colleges’ 

job easier. SAT II tests allow colleges to easily compare you to other applicants and 

provide you with an excellent chance to shine. If you got a 93% on your Chemistry final 

and a student at another high school across the country got a 91%, colleges don’t know 

how to compare the two grades. They don’t know whose class was harder or whose 

teacher was a tougher grader. But if you get a 720 on the SAT II Chemistry and that other 

kid gets a 650, colleges will recognize the difference in your scores.

College Placement 
Occasionally, colleges use SAT II tests to determine placement. For example, if you do 

very well on the SAT II Chemistry, you might be exempted from a basic science class. It’s 
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worth finding out whether the colleges you’re applying to use the SAT II tests for this 

purpose.

Scoring the SAT II Subject Tests

There are three different versions of your SAT II score. The “raw score” is a simple score 

of how you did on the test, like the grade you might receive on a normal test in school. 

The “percentile score” compares your raw score to all the other raw scores in the country, 

letting you know how you did on the test in relation to your peers. The “scaled score,” 

which ranges from 200 to 800, compares your score to the scores received by all students 

who have ever taken that particular SAT II.

The Raw Score
You will never know your SAT II raw score because it is not included in the score report. 

But you should understand how the raw score is calculated because this knowledge can 

affect your strategy for approaching the test.

A student’s raw score is based solely on the number of questions that student got right, 

wrong, or left blank:

• You earn 1 point for every correct answer 

• You lose 1/ 4 of a point for each incorrect answer 

• You receive zero points for each question left blank

Calculating the raw score is easy. Count the number of questions answered correctly and 

the number of questions answered incorrectly. Then multiply the number of wrong 

answers by 1/4, and subtract this value from the number of right answers.

raw score = right answers - ( 1/4 wrong answers)

The Percentile Score
A student’s percentile is based on the percentage of the total test takers who received a 

lower raw score than he or she did. Let’s say, for example, you had a friend named Gregor 

Mendel, and he received a score that placed him in the 93rd percentile. That percentile 

tells Gregor that he scored better on the SAT II than 92 percent of the other students who 

took the same test; it also means that 7 percent of the students taking that test scored as 

well as or better than he did.

The Scaled Score
ETS takes your raw score and uses a formula to turn it into the scaled score of 200 to 800 

that you’ve probably heard so much about.

The curve to convert raw scores to scaled scores differs from test to test. For example, a 

raw score of 33 on the Biology might scale to a 600, while the same raw score of 33 on the 

Chemistry will scale to a 700. In fact, the scaled score can even vary between different 

editions of the same test. A raw score of 33 on the February 2004 Math IIC might scale to 

a 710, while a 33 in June 2004 might scale to a 690. These differences in scaled scores 

exist to accommodate varying levels of difficulty and student performance from year to 

year.
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Which SAT II Subject Tests to Take

There are three types of SAT II test: those you must take, those you should take, and 

those you shouldn’t take.

• The SAT II tests you must take are those required by the colleges you are 

interested in. 

• The SAT II tests you should take are tests that aren’t required, but that you’ll do 

well on, thereby impressing the colleges looking at your application. 

• The SAT II tests you shouldn’t take are those that aren’t required and cover a 

subject you don’t feel confident about.

Determining Which SAT II Tests Are Required
You’ll need to do a bit of research to find out if the colleges you’re applying to require that 

you take a particular SAT II test. Call the schools you’re interested in, look at their web 

sites, or talk to your guidance counselor. Often, colleges require that you take the 

following SAT II tests:

• The SAT II Writing test 

• One of the two SAT II Math tests (either Math IC or Math IIC) 

• Another SAT II in a subject of your choice 

The SAT II Chemistry is not usually required by colleges. But taking it and doing well can 

show a liberal arts college that you are well-rounded or a science-oriented college that 

you are serious about science. In general, it is a good idea to take one science-based SAT 

II, such as Biology, Chemistry, or Physics.

Deciding If You Should Take an SAT II That Isn’t Required
There are two rules of thumb for deciding which additional test to take beyond the 

Writing and Math tests:

1. Go with what you know. If history is your field, a strong score on the 

American History test will impress admissions officers far more than a bold but 

mediocre effort on the Physics test. 

2. Try to show breadth. Scoring well on similar subject tests such as Math, 

Biology, and Chemistry will not be as impressive as good scores in more diverse 

subjects, such as Math, Writing, World History, and Biology. 

Of course, you also have to know what is considered a good score and whether or not you 

can get that score (or higher). 

Below we have included a list of the most commonly taken SAT II tests and the average 

scaled score on each. If you feel confident that you can get a score that is above the 

average (50 points or more), taking the test will probably strengthen your college 

application. Please note that if you are planning to attend an elite school, you might have 

to score significantly higher than the national average. The following table is just a 
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general guideline. It’s a good idea to call the schools that interest you or talk to a guidance 

counselor to get a more precise idea of what score you should be shooting for.
Test Average Score

Writing 590–600

Literature 590–600

American History 580–590

World History 570–580

Math IC 580–590

Math IIC 655–665

Biology E&M 590–600

Chemistry 605–615

Physics 635–645

As you decide which test to take, be realistic with yourself. Don’t just assume you’re going 

to do great without at least taking a practice test and seeing where you stand. 

When to Take an SAT II Subject Test

The best time to take an SAT II Subject Test is right after you’ve finished a year-long class 

in that subject. If, for example, you take Chemistry in eleventh grade, then you should 

take the SAT II Chemistry near the end of that year, when the material is still fresh in 

your mind. (This rule does not apply for the Writing, Literature, and Foreign Language 

SAT II tests; it’s best to take those after you’ve had as much study in the area as possible.)

Unless the colleges you’re applying to use the SAT II for placement purposes, there is no 

point in taking any SAT II tests after November of your senior year, since you won’t get 

your scores back from ETS until after the college application deadline has passed.

ETS usually sets testing dates for SAT II Subject Tests in October, November, December, 

January, May, and June. However, not every subject test is administered in each of these 

months. To check when the test you want to take is being offered, visit the College Board 

Web site at www.collegeboard.com or do some research in your school’s guidance office.

Registering for SAT II Tests
To register for the SAT II test(s) of your choice, you have to fill out some forms and pay a 

registration fee. We know, we know—it’s ridiculous that you have to pay for a test that 

colleges require you to take in order to make their jobs easier, but, sadly, there isn’t 

anything we, or you, can do about it. (It’s acceptable here to grumble about the unfairness 

of the world.)
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After grumbling, however, you still have to register. There are two ways to go about it: 

online or by mail. To register online, go to www.collegeboard.com. To register by mail, fill out 

and send in the forms enclosed in the Registration Bulletin, which should be available in 

your high school’s guidance office. You can also request a copy of the Bulletin by calling 

the College Board at (609) 771-7600 or writing to:

College Board SAT Program

P.O. Box 6200

Princeton, NJ 08541–6200

You can register to take up to three SAT II tests for any given testing day. Unfortunately, 

even if you decide to take three tests in one day, you’ll still have to pay a separate 

registration fee for each.

Introduction to SAT II Physics

THE BEST WAY TO DO WELL ON SAT II Physics is to be really good at physics. For that, there 

is no substitute. But the physics whiz who spends the week before SAT II Physics cramming on 

Lagrangian mechanics and Dirac notation probably won’t fare any better than the average student 

who reviews this book carefully. Why? Because SAT II Physics Tests (and first-year university 

courses) do not cover Lagrangian mechanics or Dirac notation. Take this moment to sigh with 

relief.

This chapter will  tell you precisely what SAT II Physics  will test you on, how the test breaks 

down, and what format the questions will take. You should read this information carefully and 

base your study plan around it. There’s no use spending hours on end studying for stuff that’s not 

relevant to the test. Knowing nothing about electromagnetic induction will hurt you on the test, 

but nowhere near as much as knowing nothing about optics will.

Content of SAT II Physics

Math and physics go hand in hand, right? You might be surprised, then, to learn that you aren’t 

allowed to use a calculator on SAT II Physics. The math required of you never goes beyond simple 

arithmetic  and  manipulation of  equations.  You have,  on average,  48 seconds  to  answer  each 

question, and the people at ETS realize that isn’t enough time to delve into problems involving 

simultaneous equations or complex trigonometry. They’re more interested in testing your grasp of 

the basic concepts of physics. If you’ve grasped these concepts, your weakness in math isn’t going 

to hurt you.

ETS breaks down the concepts you need to know for the test into six categories:
Topic Percentage of the Test 

Mechanics 34–38%

Electricity and Magnetism 22–26%

Waves 15–19%

Heat, Kinetic Theory, and Thermodynamics 8–12%
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Modern Physics 8–12%

Miscellaneous 2–4%

While these categories are helpful, they are also very broad. You may be a whiz with waves but a 

loser with lenses, and want to know how much of the waves portion of the test will be devoted to 

optics. To help you out, we’ve broken the test down even further so that you’ll know exactly 

where to expect to feel the squeeze. (These figures are only approximations, and may vary from 

test to test.)
Topic % of the Test Number of Questions

Mechanics 34–38% 25–29

Vectors 2% 1–2

Kinematics 6% 4–5

Dynamics 10% 7–8

Work, Energy, and Power 6% 4–5

Special Problems in Mechanics 5% 3–4

Linear Momentum 2% 1–2

Rotational Motion 1% 0–1

Circular Motion and Gravitation 4% 2–4

Thermal Physics 8–12% 6–10

Heat and Temperature 4% 2–4

Kinetic Theory and Ideal Gas Laws 2–3% 1–2

Laws of Thermodynamics 1% 0–2

Heat Engines 2–3% 1–2

Electricity & Magnetism 22–26% 16–20

Electric Fields, Forces, Potential 10% 7–8

Magnetic Fields and Forces 6% 4–5

Electromagnetic Induction 1% 1

Circuits and Circuit Elements 6% 4–5
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Waves 15–19% 11–15

Waves 10% 7–8

Optics 7% 5–6

Modern Physics 8–12% 6–9

Special Relativity 1–2% 1–2

Atomic Models 3% 2–3

Quantum Physics 2% 1–2

Nuclear Physics 3% 2–3

Miscellaneous 2–4% 1–3

Graph Analysis 1–2% 0–2

Equation Manipulation 0.5–1% 0–1

Significant Digits and Lab Skills 0.5–1% 0–1

The chapters of this book are organized according to these categories. If a physics topic is not in 

this book, you don’t need to know it. Here’s some other helpful information: 

You need to know: the formulas expressing physical relationships (such as  F = ma),  how to 

manipulate equations, how to read a graph

You don’t need to know: trig identities, calculus, three-dimensional vectors and graphs, physical 

constants (such as G = 6.67 10–11 N·m2  kg⁄ 2)

Format of SAT II Physics

SAT II Physics is a one-hour-long test composed of 75 questions and divided into two parts. You 

can answer  questions in any order  you like,  though you’re  less  likely to  accidentally leave a 

question  out  if  you  answer  them  in  the  order  in  which  they  appear.  Part  A—classification 

questions—takes up the first 12 or 13 questions of the test, while Part B—five-choice completion 

questions—takes up the remaining 62 or 63 questions.

Part A: Classification Questions
Classification questions are the reverse of normal multiple-choice question:  they give you the 

answers first and the questions second. You’ll be presented with five possible answer choices, and 

then a string of two to four questions to which those answer choices apply. The answer choices are 

usually either graphs or the names of five related laws or concepts. Because they allow for several 

questions on the same topic, classification questions will ask you to exhibit a fuller understanding 

of the topic at hand.

The level of difficulty within any set of questions is generally pretty random: you can’t expect the 

first question in a set to be easier than the last. However, each set of classification questions is 
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generally a bit harder than the one that came before. You should expect questions 11–13 to be 

harder than questions 1–4.

Classification Question Example

Directions:   Each  set  of  lettered  choices  below  refers  to  the  numbered  questions 
immediately  following  it.  Select  the  one  lettered choice  that  best  answers  each question 
and  then  blacken  the  corresponding  space  on  the  answer  sheet.  A  choice  may  be  used 
once, more than once, or not at all in each set.

Questions 1–3

A boy throws a ball straight up in the air and then catches it again.

1. . Which of the above graphs best represents the ball’s position with respect to time?

2. . Which of the above graphs best represents the ball’s velocity with respect to time?

3. . Which of the above graphs best represents the ball’s acceleration with respect to time?

Explanation

You can usually answer classification questions a bit more quickly than the standard five-choice 

completion questions, since you only need to review one set of answer choices to answer a series 

of questions.

The answer to question 1 is  B. The ball’s position with respect to time can be expressed by the 

equation  y = –1/2 gt2, where  g is the downward, acceleration due to gravity. As we can see, the 

graph of y against t is an upside-down parabola. In more intuitive terms, we know that, over time, 

a ball thrown in the air will rise, slow down, stop, and then descend.

The answer to question 2 is E. The acceleration due to gravity means that the velocity of the ball 

will decrease at a steady rate. On the downward half of the ball’s trajectory, the velocity will be 
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negative, so E, and not A, is the correct graph.

The answer to question 3 is  D. The acceleration due to gravity is constant throughout the ball’s 

trajectory, and since it is in a downward direction, its value is negative.

Don’t worry if the question confused you and the explanations didn’t help. This material and more 

will  be  covered  in  Chapter  2:  Kinematics.  This  was  just  an  exercise  to  show  you  how  a 

classification question is formatted. 

Part B: Five-Choice Completion Questions
These are the multiple-choice questions we all know and love, and the lifeblood of any multiple-

choice exam. You know the drill: they ask a question, give you five possible answer choices, and 

you pick the best one. Got it? Good. An example appears below.

While you’ll often find two or three questions in a row that deal with the same topic in physics, 

there  is  no pattern.  You might  find a  question on modern physics  followed by a  question on 

dynamics followed by a question on optics. However, there is a general tendency for the questions 

to become more difficult as you progress.

Five-Choice Completion Question Example

Directions:   Each  of  the  questions  of  incomplete  statements  below  is  followed  by  five 
suggested answers or completions. Select the one that is best in each case and then fill in 
the corresponding oval on the answer sheet.

1. . A  gas  in  a  closed  container  is  steadily  heated  over  a  period  of  time.  Which  of  the  following 
statements is true of this process?
(A) The average kinetic energy of the gas molecules decreases
(B) The mass of the container increases
(C) The pressure exerted by the gas on the walls of the container increases
(D) The gas changes phase into a liquid
(E) The specific heat of the gas decreases

Explanation

The answer to this question is  C.  The key lies in remembering the ideal gas law:  PV = nRT. 

According to this formula, an increase in temperature is accompanied by an increase in pressure. A 

is wrong, since the average kinetic energy of gas molecules corresponds to their temperature: if 

the temperature increases, so does the average kinetic energy of the molecules. B is wrong because 

we’re dealing with a closed container: the mass cannot either increase or decrease.  D is wrong 

because a gas must be cooled, not  heated, to change phase into a liquid. Finally,  E is  wrong 

because the specific heat of any substance is a constant, and not subject to change. We’ll touch on 

all this and more in Chapter 9: Thermal Physics.

How Your Knowledge Will Be Tested

There are three different levels on which your understanding of physics may be tested. While 

questions on kinematics often require that you make use of some of the formulas for kinematic 

motion, questions on quantum physics or atomic structure may often ask just that you remember 

the name of a particular concept. Knowing the different ways in which your knowledge may be 

tested should help you better prepare yourself for the exam.
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Recall (20–33% of the test)
These are questions of the either-you-know-it-or-you-don’t variety. They test your understanding 

of the basic concepts of physics. No equations or calculations are necessary for these questions. 

They’re simply a matter of knowing your stuff.

Single-Concept Problem (40–53% of the test)
These questions expect you to recall,  and make use of, one physical relationship, formula, or 

equation. This might involve plugging numbers into a kinematic equation of motion, or it might 

involve recalling the equation  E = hf and solving for  E or  f. These questions test to see if you 

know important formulas and how to apply them.

Multiple-Concept Problem (20–33% of the test)
These questions expect you to bring together two or more different relationships, formulas, or 

equations. This could involve bringing together two formulas from the same subject—for instance, 

a problem in linear momentum that requires you to calculate the momentum of an object before a 

collision  so  that  you  can  calculate  its  velocity  after  the  collision—or  it  may  bring  together 

formulas  from two different  subjects—for instance,  a  problem that  involves  an  electric  point 

charge  moving  in  circular  motion  in  a  magnetic  field.  These  questions  test  not  only  your 

knowledge of physical relationships, but also your ability to integrate more than one in a complex 

problem.

You’re  probably  thinking  that  the  recall  questions  are  the  easiest,  and  the  multiple-concept 

problems are the hardest. This isn’t necessarily true. Most people have an easier time bringing 

together  two simple principles  of  mechanics  than recalling the  significance of  the  Rutherford 

experiment. You’ll find all three types of questions throughout the test, and at different levels of 

difficulty. Ultimately, every question tests the very same thing: whether you’ve grasped the basic 

principles of physics.

Strategies for Taking SAT II Physics

A MACHINE,  NOT A PERSON,  WILL SCORE your  SAT II  Physics  Test.  The  tabulating 

machine sees only the filled-in ovals on your answer sheet, and doesn’t care how you came to 

these answers; it just impassively notes if your answers are correct. A lucky guess counts in your 

favor just as much as an answer you give confidently. By the same token, if you accidentally fill in 

B where you meant C, you won’t get any credit for having known what the answer was. Think of 

the multiple-choice test as a message to you from ETS: “We care only about your answers. We do 

not care about the work behind those answers.” 

So you should give ETS as many right answers as possible. The SAT II Physics Test not only 

allows you to show off your knowledge of physics, it allows you to show off your foxlike cunning 

by figuring out what strategies will enable you to best display that knowledge. This chapter will 

first cover some general principles of test taking that apply equally to this test and any other SAT 

test you might take, then it will  discuss a few strategies that are particularly useful to SAT II 

Physics.

General Test-Taking Strategies

Most  of  these  “strategies”  are  common  sense;  many  of  them  you  already  know.  But  we’re 
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including them anyway because it’s amazing how a timed test can warp and mangle common 

sense. If you review anything in the minutes before taking the test, review these strategies. 

General Hint 1: Be Calm 
The best way to do poorly on a test is to psych yourself out. Physics in particular calls for cool, 

systematic thinking: if your mind starts thrashing about wildly, it will have a hard time settling on 

the right answers. There are a number of preventative measures you can take, beginning weeks, or 

even months, before the test date. Buying this book was a good start: it’s reassuring to see all the 

information you’ll need to ace the test in a compact, manageable form. But there are a number of 

other things you ought to keep in mind:

Study in advance.

If you’ve studied at regular intervals leading up to the test, and don’t do all your cramming the 

night before, the information will sit more securely in your mind.

Be well rested.

Get a good night’s sleep on the two nights leading up to the test.  If you’re frazzled or wired, 

you’re going to have a harder time buckling down and concentrating when it really counts.

Come up for air.

Don’t assume that the best way to take an hour-long test is to spend the full hour nose-to-nose 

with the test questions. If you lift your head occasionally, look about you, and take a deep breath, 

you’ll return to the test with a clearer mind. You’ll lose maybe ten seconds of your total test-taking 

time, but you’ll be all the more focused for the other fifty-nine minutes and fifty seconds.

General Hint 2: Fill in Your Answers Carefully
This is very important. People make mistakes filling in their answer sheets and it can cost them 

big-time. This slip up occurs most frequently after you skip a question. If you left question 43 

blank, and then unthinkingly put the answer to question 44 into row 43, you could start a long, 

painful chain of wrong answers. Don’t do this. 

Some test prep books advise that you fill in your answer sheet five questions at a time rather than 

one at a time. Some suggest that you fill out each oval as you answer the question. We think you 

should fill out the answer sheet in whatever way feels most natural to you, but make sure you’re 

careful while doing it. In our opinion, the best way to ensure that you’re being careful is to talk to 

yourself: as you figure out an answer in the test booklet and transfer it over to the answer sheet 

ovals, say to yourself: “Number 23, B. Number 24, E. Number 25, A.”

General Hint 3: Pace Yourself
At the very least, aim to look at every question on the test. You can’t afford to lose points because 

you didn’t have the time to look at a question you could have easily answered. You can spend an 

average of forty-eight seconds on each question, though you’ll probably breeze through some in 

ten seconds and dwell on others for two minutes. Knowing how to pace yourself is a critical skill

—and these three guidelines should help:

Don’t dwell on any one question for too long.

If you’ve spent a couple minutes laboring over the question, you might just want to make a note of 

it and move on. If you feel the answer is on the tip of your tongue, it might come more easily if 

you just let it rest and come back to it later. Not only is it demoralizing to spend five minutes on a 

single question, but it also eats up precious time in which you might have answered a number of 

easier questions.

Nail the easy questions.
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As we said in the previous chapter, the test questions get progressively harder as you go along. 

Nonetheless, there will be some tough ones thrown in right at the start, and you’ll find giveaways 

right up until the end. If you dwell too long on tough questions, you jeopardize your chances of 

looking at every question and gaining points for the easy ones. Remember: you get as many points 

for answering an easy question as a difficult one, and you get a lot more points for five quickly 

answered easy questions than for one hard-earned victory.

Skip the unfamiliar.

If you encounter a question you can’t make heads or tails of, just skip it. Don’t sweat too hard 

trying to sort out what’s going on. If you have time at the end, come back to it and see if you can 

make an educated guess.  Your first  priority should be to get  all  the easy questions,  and your 

second priority  should be  to  work  through  the  questions  you  can  solve  with some difficulty. 

Unfamiliar material should be at the bottom of your list of priorities.

General Hint 4: Set a Target Score
You can make the job of pacing yourself much easier if you go into the test knowing how many 

questions you have to answer correctly in order to earn the score you want. So, what score do you 

want? Obviously, you should strive for the best score possible, but also be realistic: consider how 

much you know about physics and how well you do, generally, on SAT-type tests. You should also 

do a little research and find out what counts as a good score for the colleges you’re applying to: is 

it a 620? a 680? Talk to the admissions offices of the colleges you might want to attend, do a little 

research in college guidebooks, or talk to your guidance counselor. Find out the average score of 

students admitted to the schools of your choice, and set your target score above it (you want to be 

above average, right?). Then take a look at the chart we showed you before. You can score:

800 if you answered 68 right, 7 wrong, and left 0 blank 

750 if you answered 58 right, 12 wrong, and left 5 blank

700 if you answered 51 right, 13 wrong, and left 11 blank

650 if you answered 43 right, 16 wrong, and left 16 blank

600 if you answered 36 right, 19 wrong, and left 20 blank

Suppose the average score on SAT II Physics for the school you’re interested in is 650. Set your 

target at about 700. To get that score, you need to get 51 questions right, which leaves you room to 

get 13 wrong and leave 11 blank. In other words, you can leave a number of tough questions 

blank, get a bunch more wrong, and still get the score you want. As long as you have some idea of 

how many questions you need to answer—bearing in mind that you’ll likely get some questions 

wrong—you can pace yourself accordingly. Taking practice tests is the best way to work on your 

pacing.

If you find yourself effortlessly hitting your target score when you take the practice tests, don’t 

just pat yourself on the back. Set a higher target score and start aiming for that one. The purpose of 

buying this book and studying for the test is to improve your score as much as possible, so be sure 

to push your limits.

General Hint 5: Know What You’re Being Asked
You can’t know the answer until you know the question. This might sound obvious, but many a 

point has been lost by the careless student who scans the answer choices hastily before properly 

understanding the question. Take the following example:
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Two positively charged particles, one twice as massive as the other, are moving in the same circular 
orbit in a magnetic field. Which law explains to us why the less massive particle moves at twice the 
speed of the more massive particle? 
(A) Coulomb’s Law
(B) Conservation of angular momentum
(C) Hooke’s Law
(D) The ideal gas law
(E) Heisenberg’s uncertainty principle

The hasty student will notice that the question is about charged particles, and see “Coulomb’s 

Law” as the first answer choice. Without further ado, the student answers A and loses a quarter of 

a point.

A more careful student will not just read the question, but will take a moment to understand the 

question  before  glancing  at  the  answer  choices.  This  student  will  realize  that  the  question 

ultimately deals with particles moving in circular orbits, and the relative speeds of these particles. 

Whether or not these particles are charged is irrelevant: you’re facing a problem of rotational 

motion, not of electric forces. Once you’ve recognized what you’re dealing with, you will have 

little trouble in correctly answering B.

General Hint 6: Know How to Guess
ETS doesn’t take off  1 /4 of a point for each wrong answer in order to punish you for guessing. 

They  do it  so  as  not  to  reward you for  blind guessing.  Suppose that,  without  looking at  the 

questions at all, you just randomly entered responses in the first 20 spaces on your answer sheet. 

Because there’s a 20% chance of guessing correctly on any given question, odds are you would 

guess right for four questions and wrong for 16 questions. Your raw score for those 20 questions 

would then be: .

You would be no better off and no worse off than if you’d left those twenty spaces blank.

Now suppose in each of the first 20 questions you are able to eliminate just one possible answer 

choice, so that you guess with a 25% chance of being right. Odds are, you’d get five questions 

right and 15 questions wrong, giving you a raw score of: .

The lesson to be learned here is that blind guessing doesn’t help, but educated guessing does. If 

you can eliminate even one of the five possible answer choices, you should guess. We’ll discuss 

how  to  eliminate  answer  choices  on  certain  special  kinds  of  questions  in  Physics  Hint  5: 

Eliminate Wrong Answers.

Guessing as Partial Credit
Some students feel that guessing is like cheating—that guessing correctly means getting credit 

where none is due. But instead of looking at guessing as an attempt to gain undeserved points, you 

should look at it as a form of partial credit. Suppose you’re stumped on the question we looked at 

earlier regarding the charged particle moving in circular motion in a magnetic field. Though you 

don’t know the correct answer, you may know the answer isn’t the ideal gas law, because the 

question doesn’t deal with gases in any way. Suppose you also know that the answer isn’t Hooke’s 

Law, because Hooke’s Law deals with force exerted by a spring, and there are no springs in this 

question. Don’t you deserve something for that extra knowledge? Well, you do get something: 

when you look at this question, you can throw out C and D as answer choices, leaving you with a 

one in three chance of getting the question right if you guess. Your extra knowledge gives you 

better odds of getting this question right, exactly as extra knowledge should. 
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SAT II Physics Test-Taking Strategies

All the strategies discussed above can be applied equally to SAT II Physics and SAT II Modern 

Hebrew. That’s why they’re called “general hints.” However, as you may have noticed, there are a 

number of differences between the study of physics and the study of modern Hebrew. Because 

physics is unlike modern Hebrew, and even unlike math and chemistry, there are a number of 

strategies that apply uniquely to SAT II Physics. Some of these strategies will help you out in 

physics generally, while some are suited to the unique idiosyncrasies of the SAT II format.

Physics Hint 1: Know Those Formulas!
You aren’t allowed to bring a calculator into the SAT II, nor are you allowed to bring in a sheet of 

paper with useful  information on it.  That  means that  if  you haven’t memorized formulas like 

F = ma and you’re going to lose a lot of points. As we said earlier, 67–80% of 

the test requires that you know your formulas.

This doesn’t mean you have to do a lot of rote memorization. As you become more familiar with 

the principles of physics, you’ll find that the equations that express these principles will become 

increasingly intuitive. You’ll find patterns: for instance, the force exerted at any point in a field, be 

it a gravitational field or an electric field, is inversely proportional to  r2. That’s why Coulomb’s 

Law and Newton’s Law of Gravitation look similar. Knowing your physics will help you know 

your formulas.

A lot of people feel burdened coming into an exam with lots of formulas and equations in their 

head. It can feel like your mind is “full,” and there’s no room for the problem solving at hand. If 

you  have trouble  remembering formulas,  you  might  want  to  look them over  carefully  in  the 

minutes before the  test,  and then,  before you even look at  the first  question,  write  down the 

formulas you have a hard time remembering on the back of the question booklet. That way, you 

can refer back to them without any painful effort of recollection.

Physics Hint 2: Estimate
This hint goes hand in hand with General Hint 5: Know What You’re Being Asked. Don’t dive 

blindly into five possible answer choices until you know what you’re looking for. The first way to 

know what you’re looking for is to understand the question properly. Once you understand the 

question, get a rough sense of what the correct answer should look like.

Estimation is only useful for questions involving calculation: you can’t “estimate” which Law of 

Thermodynamics states that the world tends toward increasing disorder. In questions involving a 

calculation, though, it may save you from foolish errors if you have a sense of the correct order of 

magnitude. If you’re being asked to calculate the mass of a charging elephant, you can be pretty 

confident that the answer won’t be 2 kg, which would be far too small, or kg, which would 

be far too big. Estimation is a good way to eliminate some wrong answers when you’re making an 

educated guess.

Physics Hint 3: Put It on Paper
Don’t be afraid to write and draw compulsively. The first thing you should do once you’ve made 

sure you understand the question is to draw a diagram of what you’re dealing with. Draw in force 

vectors, velocity vectors, field lines, ray tracing, or whatever else may be appropriate. Not only 
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will a visual representation relieve some of the pressure on your beleaguered mind, it may also 

help the solution jump right off the page at you.

Drawing graphs can also make a solution appear out of thin air. Even if a problem doesn’t ask you 

to express anything in graphic terms, you might find that a rough sketch of, say, the velocity of a 

particle with respect to time will give you a much clearer sense of what you’re dealing with.

And don’t forget to write down those equations! Writing down all the equations you can think of 

may lead you to a correct answer even if you don’t really understand the question. Suppose you 

know the problem deals with an electric circuit, and you’re given values for current and electric 

potential. Write down equations like V = IR and P = IV, plug in values, fiddle around a little, and 

see if you can come up with an answer that looks right.

Physics Hint 4: Answers Are Not Convoluted
Remember, on SAT II Physics you’re not allowed to use a calculator, and you’re only given, on 

average,  48 seconds to answer each question. If you’re working on a problem and find yourself 

writing out lines and lines of simultaneous equations, trying to figure out  or trying to 

recall your trig identities, you’re probably on the wrong track. These questions are designed in 

such a way that, if you understand what you’re being asked, you will need at most a couple of 

simple calculations to get the right answer.

Physics Hint 5: Eliminate Wrong Answers
In General Hint 6: Know How To Guess, we explained the virtues of eliminating answers you 

know to be wrong and taking a guess. On most questions, there will be at least one or two answer 

choices  you can  eliminate.  There  are  also  certain  styles  of  questions that  lend themselves  to 

particular process-of-elimination methods.

Classification Questions

Questions 1–3   relate to the following quantities:

(A) Frequency

(B) Amplitude

(C) Period

(D) Wavelength

(E) Kinetic Energy

1. . Which is measured in hertz?

2. . For  a  mass  on  a  spring,  which  is  maximized  when  the  displacement  of  the  mass  from  its 
equilibrium position is zero?

3. . Which quantity is not applied to pendulum motion?

The weakness of classification questions is that the same five answer choices apply to several 
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questions. Invariably, some of these answer choices will be tempting for some questions but not 

for others. For instance, you can be pretty sure that kinetic energy isn’t measured in hertz: E may 

be a tempting answer choice for other questions but not for that one, so you can eliminate it.

Another point that may help you guess in a pinch is that you’ll rarely find that the same answer 

choice is correct for two different questions. The directions for classification questions explicitly 

state that an answer choice “may be used once, more than once, or not at all,” but on the whole, 

the ETS people shy away from the “more than once” possibility. This is by no means a sure bet, 

but if you’re trying to eliminate answers, you might want to eliminate those choices that you’ve 

already used on other questions in the same set.

If you’re wondering, the answers to the above questions are 1 A, 2 E, and 3 D.

“EXCEPT” Questions

All of the following are true about an -particle EXCEPT
(A) It has an atomic mass of 4
(B) It carries a positive charge
(C) It is identical to the nucleus of a helium atom
(D) It will always pass right through a thin sheet of gold foil
(E) It contains two neutrons

Questions of the “EXCEPT” variety contain a bunch of right answers and one wrong answer, and 

it’s generally possible to spot one or two right answers. Even if you can’t answer the question 

confidently, you might remember that alpha particles have a positive charge and that they are 

identical to the nucleus of a helium atom. Already, you’ve eliminated two possible answers, and 

can make a pretty good guess from there.

If you’re interested, the answer is D: Rutherford’s gold foil experiment showed that alpha particles 

would occasionally deflect off the gold foil at extreme angles, thus proving that atoms have nuclei.

“I, II, and III” Questions

For which of the following is f > 0:
  I.  Concave  mirror
 II.  Convex  mirror
III. Converging lens
(A) I only
(B) II only
(C) I and III only
(D) II and III only
(E) I, II, and III

In this style  of multiple-choice question,  the “I,  II,  and III”  questions provide you with three 

possible answers, and the five answer choices list different combinations of those three. There’s an 

upside and a downside to questions like these. Suppose you know that a concave mirror has f > 0 

and a convex mirror doesn’t, but you’re not sure about a converging lens. The downside is that 

you can’t get the right answer for sure. The upside is that you can eliminate B, D, and E, and have 

a 50% chance of guessing the right answer. As long as you’re not afraid to guess—and you should 

never be afraid to guess if you’ve eliminated an answer—these questions shouldn’t be daunting. 

The value of f for a converging lens is positive, so the answer is C.
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Physics Hint 6: Be Flexible
Knowing your physics formulas is a must, but they’re useless if you don’t know how to apply 

them. You will probably never be asked to calculate the force acting on an object given its mass 

and acceleration. Far more likely, you will be asked for the acceleration given its mass and the 

force acting on it. Knowing that F = ma is useless unless you can also sort out that a = F m⁄ .

The ETS people don’t want to test your ability to memorize formulas; they want to test your 

understanding of formulas and your ability to use formulas. To this end, they will word questions 

in  unfamiliar  ways and expect  you to  manipulate  familiar  equations  in  order  to  get  the  right 

answer. Let’s look at an example.

A satellite orbits the Earth at a speed of 1000 m⁄s. Given that the mass of the Earth is kg 

and the universal gravitational constant is N Â· m2 ⁄ kg2, what is the best approximation 
for the radius of the satellite’s orbit?
(A)

m
(B)

m
(C)

m
(D)

m
(E)

m

What’s the universal  gravitational  constant?  Some people will  know that  this  is  the  G in the 

equation for Newton’s Law of Gravitation: . Other people won’t know that 

G is called the “universal gravitational constant,” and ETS will have successfully separated the 

wheat from the chaff. It’s not good enough to know some formulas: you have to know what they 

mean as well.

Given that we know what the universal gravitational constant is, how do we solve this problem? 

Well, we know the satellite is moving in a circular orbit, and we know that the force holding it in 

this circular orbit is the force of gravity. If we not only know our formulas, but also understand 

them, we will know that the gravitational force must be equal to the formula for centripetal force, 

.  If  we  know to  equate  these  two formulas,  it’s  a  simple  matter  of  plugging  in 

numbers and solving for r.

Knowing formulas, however, is a small part of getting the right answer. More important, you need 

to  know  how  to  put  these  two  equations  together  and  solve  for r.  On  their  own,  without 

understanding how to use them, the equations are useless.

But there are two slightly underhanded ways of getting close to an answer without knowing any 

physics equations. These aren’t foolproof methods, but they might help in a pinch.

Slightly Underhanded Way #1: Elimination through Logic

By scanning the possible answer choices, you can see that the answer will begin either with a 4 or 

a 2.5. There are three options beginning with 4 and only two beginning with 2.5. Odds are, the 

correct answer begins with 4. The test makers want to give you answer choices that are close to 

the  correct  answer so that,  even if  you’re  on the  right  track,  you might  still  get  caught  in  a 
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miscalculation.

Second,  make  a  rough  estimate.  At  what  sorts  of  distances  might  a  satellite  orbit?  We can 

eliminate  A immediately: that answer has our satellite orbiting at 4 cm from the center of the 

Earth! That leaves us with a choice between B and C. Those aren’t bad odds for guessing.

Slightly Underhanded Way #2: Work with the Letters

This is a method for those of you who like manipulating equations. From looking at the answer 

choices, you know the answer will be in meters. You’ve been given three quantities, one expressed 

in m/s, one expressed in kg, and one expressed in N·m2/kg2. These are the only three quantities 

you’ll be asked to draw upon in order to get your answer. Because F = ma, you know you can 

substitute kg·m/s2 for N. So a quantity expressed in N·m2/kg2 can equally be expressed in m3/kg·s2. 

The trick, then, is to combine a quantity expressed in these terms with a quantity expressed in 

meters per second and a quantity expressed in kilograms, and wind up with a quantity expressed 

solely in meters. To do that, you need to get rid of the “kg” and the “s” by canceling them out. 

Start by canceling out the “kg”:

Now you need to cancel out the “s2” in the denominator. Let’s divide by the square of our “m/s” 

quantity:

There you have it. You didn’t need to use a single formula to get the answer. You just had to be 

aware of the terms in which your answer needed to be expressed, and manipulate the quantities 

you were given in the question.

Word to the wise: don’t use this method unless you’re absolutely stumped. It can backfire, and is 

of course no substitute for careful reasoning.

Vectors

VECTORS ARE USUALLY THE FIRST THING you learn in a physics class, and they’re the first 

thing you’ll learn here. Vectors are one of the fundamental mathematical tools the physicist uses, 

and one that is frequently misunderstood or misapplied by students. Generally, there aren’t more 

than one or two questions on SAT II Physics that test your knowledge of vectors directly, but there 

are a host of problems—particularly in mechanics—where arriving at the right solution demands a 

solid grasp of how to apply and manipulate vectors. Even if you feel confident with vectors, we 

urge you to review this chapter and be absolutely sure you won’t get tripped up on what would 

otherwise be some easy questions.

What’s a Vector? 

A  vector is  a  mathematical  object  possessing,  and  fully  described  by,  a  magnitude and  a 

direction. It’s possible to talk about vectors simply in terms of numbers, but it’s often a lot easier 

to represent them graphically as arrows.  The vector’s magnitude is equal  to the length of the 

arrow, and its direction corresponds to where the arrow is pointing. Physicists commonly refer to 

the point of a vector as its tip and the base as its tail. 
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There are a number of ways to label vectors. You may have seen vectors labeled or A. This book 

will follow the convention you’ll find on SAT II Physics: vectors are written in boldface and 

vector magnitudes in plain script. For example, vector A has magnitude A.

Vectors vs. Scalars
In contrast to a vector quantity, a scalar quantity does not have a direction; it is fully described by 

just a magnitude. Examples of scalar quantities include the number of words in this sentence and 

the  mass  of  the  Hubble  Space  Telescope.  Vector  quantities  you’ll  likely  come  across  quite 

frequently in physics include displacement, s; velocity, v; acceleration, a; force, F; momentum, p; 

electric field, E; and magnetic field, B.

When in doubt, ask yourself if a certain quantity comes with a direction. If it does, it’s a vector. If 

it doesn’t, it’s a scalar.

EXAMPLE

Which of the following sentences deal with vector quantities?
  I.  “I  used  to  drive  a  10-ton  truck.”
 II.  “You’ll  find  a  gas  station  if  you  follow  this  road  20  miles  due  north.”
III. “The 10-volt battery is the one on your left.”
(A) I only
(B) II only
(C) III only
(D) II and III
(E) I, II, and III

“I used to drive a 10-ton truck” deals with mass, which is a scalar quantity. When we know that a 

truck weighs 10 tons, we don’t need to ask, “in what direction?” “You’ll find a gas station if you 

follow this road 20 miles due north” deals with the vector quantity of displacement. When asking 

directions to a gas station, you don’t simply want to know how far it is from where you are, but 

also in what direction you need to go. “The 10-volt battery is the one on your left” is slightly 

tricky: volts are a scalar quantity—you don’t ask in what direction the battery’s volts are going. 

However, you might be deceived by the mention of “on your left.” However, “on your left” is a 

reference to the battery, not to the volts. The magnitude “10 volts” doesn’t have a direction, so that 

quantity is a scalar. The answer is B.

Vector Addition

There  are  bound  to  be  several  questions  on  SAT II  Physics  that  involve  vector  addition, 

particularly in mechanics. The test doesn’t demand a very sophisticated understanding of vector 

addition, but it’s important that you grasp the principle. That is,  you won’t be asked to make 

complicated calculations,  but  you will  be expected to know what happens when you add two 

vectors together.
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The easiest way to learn how vector addition works is to look at it graphically. There are two 

equivalent  ways  to  add  vectors  graphically:  the  tip-to-tail  method and  the  parallelogram 

method. Both will get you to the same result, but one or the other is more convenient depending 

on the circumstances.

Tip-to-Tail Method
We can add any two vectors, A and B, by placing the tail of B so that it meets the tip of A. The 

sum, A + B, is the vector from the tail of A to the tip of B. 

Note that you’ll get the same vector if you place the tip of B against the tail of A. In other words, 

A + B and B + A are equivalent.

Parallelogram Method
To add A and B using the parallelogram method, place the tail of B so that it meets the tail of A. 

Take these two vectors to be the first  two adjacent sides of a parallelogram, and draw in the 

remaining two sides. The vector sum, A + B, extends from the tails of A and B across the diagonal 

to  the  opposite  corner  of  the  parallelogram.  If  the  vectors  are  perpendicular  and  unequal  in 

magnitude, the parallelogram will be a rectangle. If the vectors are perpendicular and equal in 

magnitude, the parallelogram will be a square.

Adding Vector Magnitudes
Of course, knowing what the sum of two vectors looks like is often not enough. Sometimes you’ll 

need to know the magnitude of the resultant vector. This, of course, depends not only on the 

magnitude of the two vectors you’re adding, but also on the angle between the two vectors.

Adding Perpendicular Vectors

Suppose vector A has a magnitude of 8, and vector B is perpendicular to A with a magnitude of 6. 

What is the magnitude of A + B? Since vectors A and B are perpendicular, the triangle formed by 

A,  B,  and  A +  B is  a  right  triangle.  We can  use  the  Pythagorean  Theorem to  calculate  the 

magnitude of A + B, which is 
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Adding Parallel Vectors

If  the  vectors  you  want  to  add  are  in  the  same  direction,  they  can  be  added  using  simple 

arithmetic. For example, if you get in your car and drive  eight miles east, stop for a break, and 

then drive six miles east, you will be 8 + 6 = 14 miles east of your origin. If you drive eight miles 

east and then six miles west, you will end up 8 – 6 = 2 miles east of your origin.

Adding Vectors at Other Angles

When A and B are neither perpendicular nor parallel, it is more difficult to calculate the magnitude 

of A + B because we can no longer use the Pythagorean Theorem. It is possible to calculate this 

sum using trigonometry, but SAT II Physics will never ask you to do this. For the most part, SAT 

II Physics will want you to show graphically what the sum will look like, following the tip-to-tail 

or parallelogram methods. On the rare occasions that you need to calculate the sum of vectors that 

are not perpendicular, you will be able to use the component method of vector addition, explained 

later in this chapter.

EXAMPLE

Vector A has a magnitude of 9 and points due north, vector B has a magnitude of 3 and points due 
north, and vector C has a magnitude of 5 and points due west. What is the magnitude of the resultant 
vector, A + B + C?

First, add the two parallel vectors,  A and B. Because they are parallel, this is a simple matter of 

straightforward addition: 9 + 3 = 12. So the vector A + B has a magnitude of 12 and points due 

north.  Next,  add  A +  B to  C.  These two vectors  are  perpendicular,  so apply the Pythagorean 

Theorem:

The sum of the three vectors has a magnitude of 13. Though a little more time-consuming, adding 

three vectors is just as simple as adding two.

Vector Subtraction
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---You probably know that subtraction is the same thing as adding a negative: 8 – 5 is the same 

thing as 8 + (–5). The easiest way to think about vector subtraction is in terms of adding a negative 

vector. What’s a negative vector? It’s the same vector as its positive counterpart, only pointing in 

the opposite direction.

A – B, then, is the same thing as A + (–B). For instance, let’s take the two vectors A and B:

To subtract B from A, take a vector of the same magnitude as B, but pointing in the opposite 

direction, and add that vector to A, using either the tip-to-tail method or the parallelogram method.

Multiplication by a Scalar

Multiplication  is  like  repeated  addition.  Multiplying  4 by  3 means  adding  four  three  times: 

. The multiplication of a vector times a scalar works in the same way. 

Multiplying the vector A by the positive scalar c is equivalent to adding together c copies of the 

vector  A. Thus 3A =  A +  A +  A. Multiplying a vector by a scalar will get you a vector with the 

same direction, but different magnitude, as the original.

24



The result of multiplying A by c is a vector in the same direction as A, with a magnitude of . 

If c is negative, then the direction of A is reversed by scalar multiplication. 

Vector Components

As we have seen, vector addition and scalar multiplication can produce new vectors out of old 

ones. For instance, we produce the vector A + B by adding the two vectors  A and B. Of course, 

there is nothing that makes A + B at all distinct as a vector from A or B: all three have magnitudes 

and directions. And just as A + B can be construed as the sum of two other vectors, so can A and B. 

In  problems involving vector  addition,  it’s often convenient  to break a vector down into two 

components, that is, two vectors whose sum is the vector in question.

Basis Vectors
We often graph vectors in an  xy-coordinate system, where we can talk about vectors in purely 

numerical terms. For instance, the vector (3,4) is the vector whose tail is at the origin and whose 

tip is at the point (3,4) on the coordinate plane. From this coordinate, you can use the Pythagorean 

Theorem  to  calculate  that  the  vector’s  magnitude  is  5 and  trigonometry  to  calculate  that  its 

direction is about 53.1º above the x-axis.

Two vectors of particular note are (1,0), the vector of magnitude 1 that points along the x-axis, and 

(0,1), the vector of magnitude 1 that points along the y-axis. These are called the basis vectors and 

are written with the special hat notation: and respectively. 

The basis vectors are important because you can express any vector in terms of the sum of 

multiples of the two basis vectors. For instance, the vector (3,4) that we discussed above—call it 

A—can be expressed as the vector sum .
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The vector is called the “x-component” of A and the is called the “y-component” of A. In 

this book, we will use subscripts to denote vector components. For example, the x-component of A 

is and the y-component of vector A is . 

The direction of a vector can be expressed in terms of the angle by which it is rotated 

counterclockwise from the x-axis.

Vector Decomposition
The  process  of  finding  a  vector’s  components  is  known  as  “resolving,”  “decomposing,”  or 

“breaking  down”  a  vector.  Let’s  take  the  example,  illustrated  above,  of  a  vector,  A,  with  a 

magnitude of A and a direction above the x-axis. Because , , and A form a right triangle, 

we can use trigonometry to solve this problem. Applying the trigonometric definitions of cosine 

and sine,

we find:

Vector Addition Using Components
Vector decomposition is particularly useful when you’re called upon to add two vectors that are 

26



neither  parallel  nor  perpendicular.  In  such  a  case,  you  will  want  to  resolve  one  vector  into 

components that run parallel and perpendicular to the other vector.

EXAMPLE

Two ropes are tied to a box on a frictionless surface. One rope pulls due east with a force of 2.0N. The 
second rope pulls with a force of 4.0N at an angle 30Âº west of north, as shown in the diagram. What 
is the total force acting on the box?

To solve this problem, we need to resolve the force on the second rope into its northward and 

westward components.

Because the force is directed 30º west of north, its northward component is

and its westward component is

Since the eastward component is also 2.0N, the eastward and westward components cancel one 

another out. The resultant force is directed due north, with a force of approximately 3.4N.

You can justify this answer by using the parallelogram method. If you fill out the half-completed 

parallelogram formed by the two vectors in the diagram above, you will find that the opposite 

corner of the parallelogram is directly above the corner made by the tails of those two vectors.
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Vector Multiplication

There are two forms of vector multiplication: one results in a scalar, and one results in a vector.

Dot Product
The dot product, also called the scalar product, takes two vectors, “multiplies” them together, and 

produces a scalar. The smaller the angle between the two vectors, the greater their dot product will 

be.  A common example of the dot product in action is the formula for work, which you will 

encounter in Chapter 4. Work is a scalar quantity, but it is measured by the magnitude of force and 

displacement,  both vector  quantities,  and the degree to  which the  force  and displacement  are 

parallel to one another.

The dot product of any two vectors, A and B, is expressed by the equation:

where is the angle made by A and B when they are placed tail to tail.

The dot product of A and B is the value you would get by multiplying the magnitude of A by the 

magnitude of the component of B that runs parallel to A. Looking at the figure above, you can get 

A · B by multiplying the magnitude of A by the magnitude of , which equals . You 

would get the same result if you multiplied the magnitude of B by the magnitude of , which 

equals .

Note that the dot product of two identical vectors is their magnitude squared, and that the dot 

product of two perpendicular vectors is zero.

EXAMPLE
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Suppose the hands on a clock are vectors, where the hour hand has a length of 2 and the minute hand 
has a length of 4. What is the dot product of these two vectors when the clock reads 2 o’clock?

The angle between the hour hand and the minute hand at 2 o’clock is 60º. With this information, 

we can simply plug the numbers we have into the formula for the dot product:

The Cross Product
The cross product, also called the vector product, “multiplies” two vectors together to produce a 

third vector, which is perpendicular to both of the original vectors. The closer the angle between 

the two vectors is to the perpendicular, the greater the cross product will be. We encounter the 

cross product a great deal in our discussions of magnetic fields. Magnetic force acts perpendicular 

both to the magnetic field that produces the force, and to the charged particles experiencing the 

force.

The cross product can be a bit tricky, because you have to think in three dimensions. The cross 

product of two vectors, A and B, is defined by the equation:

where is a unit vector perpendicular to both A and B. The magnitude of the cross product vector 

is equal to the area made by a parallelogram of A and B. In other words, the greater the area of the 

parallelogram, the longer the cross product vector.

The Right-Hand Rule

You may have noticed an ambiguity here. The two vectors A and B always lie on a common plane 

and there are two directions perpendicular to this plane: “up” and “down.”

There is no real reason why we should choose the “up” or the “down” direction as the right one, 

but it’s important that we remain consistent. To that end, everybody follows the convention known 

as the right-hand rule. In order to find the cross product, : Place the two vectors so their 

tails are at the same point. Align your right hand along the first vector, A, such that the base of 

your palm is at the tail of the vector, and your fingertips are pointing toward the tip. Then curl 
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your fingers via the small angle toward the second vector, B. If B is in a clockwise direction from 

A, you’ll find you have to flip your hand over to make this work. The direction in which your 

thumb is pointing is the direction of , and the direction of .

Note that you curl your fingers from A to B because the cross product is . If it were written 

, you would have to curl your fingers from B to A, and your thumb would point downward. 

The order in which you write the two terms of a cross product matters a great deal.

If you are right-handed, be careful! While you are working hard on SAT II Physics, you may be 

tempted to use your left hand instead of your right hand to calculate a cross product. Don’t do this. 

EXAMPLE

Suppose once again that the minute hand of a clock is a vector of magnitude 4 and the hour hand is a 

vector of magnitude 2. If, at 5 o’clock, one were to take the cross product of the minute hand the 
hour hand, what would the resultant vector be?

First of all, let’s calculate the magnitude of the cross product vector. The angle between the hour 

hand and the minute hand is 150º:

Using the right-hand rule,  you’ll  find that,  by curling the fingers of your right hand from  12 

o’clock toward  5 o’clock, your thumb points in toward the clock. So the resultant vector has a 

magnitude of 4 and points into the clock.

Key Formulas
Dot Product

Cross Product

Magnitude

Direction

X-, Y-

Components
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Vector 

Addition

Practice Questions

1. . Which of the following vectors best represents the vector A + B?
(A)

(B)

(C)

(D)

(E)

2. . Vector  A has a  magnitude of  5  in  the leftward direction and  B has a  magnitude of  2  in  the 
rightward direction. What is the value of 2A – B?
(A) 12 in the leftward direction
(B) 10 in the leftward direction
(C) 8 in the leftward direction
(D) 8 in the rightward direction
(E) 12 in the rightward direction
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3. . When the tail of vector A is set at the origin of the xy-axis, the tip of A reaches (3,6). When the tail 
of vector B is set at the origin of the xy-axis, the tip of B reaches (–1,5). If the tail of vector A – B 

were set at the origin of the xy-axis, what point would its tip touch?
(A) (2,11)
(B) (2,1)
(C) (–2,7)
(D) (4,1)
(E) (4,11)

4. .
A and B are vectors, and is the angle between them. What can you do to maximize A Â· B?
  I.  Maximize  the  magnitude  of  A
 II.  Maximize  the  magnitude  of  B

III. Set to 90Âº
(A) None of the above
(B) I only
(C) III only 
(D) I and II only
(E) I, II, and III

5. .
Which of the following statements is NOT true about ?
(A) It is a vector that points into the page
(B) It has a magnitude that is less than or equal to 12 
(C) It has no component in the plane of the page
(D) The angle it makes with B is less than the angle it makes with A
(E)

It is the same as –B A

Explanations

1.      A     

By adding A to B using the tip-to-tail method, we can see that (A) is the correct answer.
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2.      A     

The vector 2A has a magnitude of 10 in the leftward direction. Subtracting B, a vector of magnitude 2 in the 

rightward direction, is the same as adding a vector of magnitude 2 in the leftward direction. The resultant 

vector, then, has a magnitude of 10 + 2 =12 in the leftward direction.

3.      D     

To subtract one vector from another, we can subtract each component individually. Subtracting the x-

components of the two vectors, we get 3 –( –1) = 4, and subtracting the y-components of the two vectors, 

we get 6 – 5 = 1. The resultant vector therefore has an x-component of 4 and a y-component of 1, so that if 

its tail is at the origin of the xy-axis, its tip would be at (4,1).

4.      D     

The dot product of A and B is given by the formula A · B = AB cos . This increases as either A or B 

increases. However, cos = 0 when = 90°, so this is not a way to maximize the dot product. Rather, to 

maximize A · B one should set to 0º so cos = 1.

5.      D     

Let’s take a look at each answer choice in turn. Using the right-hand rule, we find that is indeed a 

vector that points into the page. We know that the magnitude of is , where is the angle 

between the two vectors. Since AB = 12, and since sin , we know that cannot possibly be 

greater than 12. As a cross product vector, is perpendicular to both A and B. This means that it has 

no component in the plane of the page. It also means that both A and B are at right angles with the cross 

product vector, so neither angle is greater than or less than the other. Last, is a vector of the same 

magnitude as , but it points in the opposite direction. By negating , we get a vector that is 

identical to .

Kinematics

KINEMATICS DERIVES ITS NAME FROM the Greek word for “motion,” kinema. Before we 

can make any headway in physics, we have to be able to describe how bodies move. Kinematics 

provides us with the language and the mathematical tools to describe motion, whether the motion 

of a charging pachyderm or a charged particle. As such, it provides a foundation that will help us 
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in all areas of physics. Kinematics is most intimately connected with dynamics: while kinematics 

describes motion, dynamics explains the causes for this motion.

Displacement

Displacement is a vector quantity, commonly denoted by the vector  s, that reflects an object’s 

change in spatial position. The displacement of an object that moves from point A to point B is a 

vector  whose tail  is  at  A and whose tip is  at  B.  Displacement deals only with the  separation 

between points  A and  B, and not with the path the object followed between points  A and  B. By 

contrast, the distance that the object travels is equal to the length of path AB.

Students often mistake displacement for distance, and SAT II Physics may well call for you to 

distinguish between the two. A question favored by test makers everywhere is to ask the 

displacement of an athlete who has run a lap on a 400-meter track. The answer, of course, is zero: 

after running a lap, the athlete is back where he or she started. The distance traveled by the athlete, 

and not the displacement, is 400 meters.

EXAMPLE

Alan and Eva are walking through a beautiful garden. Because Eva is very worried about the upcoming 
SAT II Physics Test, she takes no time to smell the flowers and instead walks on a straight path from 
the west garden gate to the east gate, a distance of 100 meters. Alan, unconcerned about the test, 
meanders off the straight path to smell all the flowers in sight. When Alan and Eva meet at the east 
gate, who has walked a greater distance? What are their displacements? 

Since Eva took the direct path between the west and east garden gates and Alan took an indirect 
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path, Alan has traveled a much greater distance than Eva. Yet, as we have discussed, displacement 

is a vector quantity that measures the distance separating the starting point from the ending point: 

the path taken between the two points is irrelevant. So Alan and Eva both have the same 

displacement: 100 meters east of the west gate. Note that, because displacement is a vector 

quantity, it is not enough to say that the displacement is 100 meters: you must also state the 

direction of that displacement. The distance that Eva has traveled is exactly equal to the magnitude 

of her displacement: 100 meters. 

After reaching the east gate, Eva and Alan notice that the gate is locked, so they must turn around 
and exit the garden through the west gate. On the return trip, Alan again wanders off to smell the 
flowers, and Eva travels the path directly between the gates. At the center of the garden, Eva stops to 
throw a penny into a fountain. At this point, what is her displacement from her starting point at the 
west gate? 

Eva is now 50 meters from the west gate, so her displacement is 50 meters, even though she has 

traveled a total distance of 150 meters. 

When Alan and Eva reconvene at the west gate, their displacements are both zero, as they both 

began and ended their garden journey at the west gate. The moral of the story? Always take time 

to smell the flowers!

Speed, Velocity, and Acceleration

Along with displacement, velocity and acceleration round out the holy trinity of kinematics. As 

you’ll see, all three are closely related to one another, and together they offer a pretty complete 

understanding of motion. Speed, like distance, is a scalar quantity that won’t come up too often on 

SAT II Physics, but it might trip you up if you don’t know how to distinguish it from velocity.

Speed and Velocity
As distance is to displacement, so speed is to velocity: the crucial difference between the two is 

that speed is a scalar and velocity is a vector quantity. In everyday conversation, we usually say 

speed  when  we  talk  about  how  fast  something  is  moving.  However,  in  physics,  it  is  often 

important to determine the direction of this motion, so you’ll find velocity come up in physics 
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problems far more frequently than speed.

A common example of speed is the number given by the speedometer in a car. A speedometer tells 

us the car’s speed, not its velocity, because it gives only a number and not a direction. Speed is a 

measure of the distance an object travels in a given length of time:

Velocity is a vector quantity defined as rate of change of the displacement vector over time:

average velocity = 

It is important to remember that the average speed and the magnitude of the average velocity may 

not be equivalent.

Instantaneous Speed and Velocity
The two equations given above for speed and velocity discuss only the average speed and average 

velocity over a given time interval. Most often, as with a car’s speedometer, we are not interested 

in an average speed or velocity, but in the  instantaneous velocity or speed at a given moment. 

That is, we don’t want to know how many meters an object covered in the past ten seconds; we 

want to know how fast that object is moving  right now.  Instantaneous velocity is not a tricky 

concept: we simply take the equation above and assume that is very, very small.

Most problems on SAT II Physics ask about an object’s instantaneous velocity rather  than its 

average velocity or speed over a given time frame. Unless a question specifically asks you about 

the average velocity or speed over a given time interval, you can safely assume that it is asking 

about the instantaneous velocity at a given moment.

EXAMPLE

Which of the follow sentences contains an example of instantaneous velocity?
(A) “The car covered 500 kilometers in the first 10 hours of its northward journey.”
(B) “Five seconds into the launch, the rocket was shooting upward at 5000 meters per second.”
(C) “The cheetah can run at 70 miles per hour.” 
(D) “Moving at five kilometers per hour, it will take us eight hours to get to the base camp.”
(E) “Roger Bannister was the first person to run one mile in less than four minutes.”

Instantaneous velocity has a magnitude and a direction, and deals with the velocity at a particular 

instant in time. All three of these requirements are met only in  B.  A is an example of average 

velocity,  C is an example of instantaneous speed, and both  D and  E are examples of average 

speed.

Acceleration
Speed and velocity only deal with movement at a constant rate. When we speed up, slow down, or 

change  direction,  we  want  to  know  our  acceleration.  Acceleration  is  a  vector  quantity  that 

measures the rate of change of the velocity vector with time:

average acceleration = 

Applying the Concepts of Speed, Velocity, and Acceleration
With these three definitions under our belt,  let’s apply them to a little story of a zealous high 
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school student called Andrea. Andrea is due to take SAT II Physics at the ETS building 10 miles 

due east from her home. Because she is particularly concerned with sleeping as much as possible 

before the test, she practices the drive the day before so she knows exactly how long it will take 

and how early she must get up.

Instantaneous Velocity

After starting her car, she zeros her odometer so that she can record the exact distance to the test 

center.  Throughout  the  drive,  Andrea  is  cautious  of  her  speed,  which  is  measured  by  her 

speedometer. At first she is careful to drive at exactly 30 miles per hour, as advised by the signs 

along the road. Chuckling to herself, she notes that her instantaneous velocity—a vector quantity

—is 30 miles per hour due east.

Average Acceleration

Along the way, Andrea sees a new speed limit sign of 40 miles per hour, so she accelerates. Noting 

with her trusty wristwatch that it takes her two seconds to change from 30 miles per hour due east 

to 40 miles per hour due east, Andrea calculates her average acceleration during this time frame:

average acceleration = 

This may seem like an outrageously large number, but in terms of meters per second squared, the 

standard units for measuring acceleration, it comes out to 0.22 m/s2.

Average Velocity: One Way

After reaching the tall, black ETS skyscraper, Andrea notes that the test center is exactly 10 miles 

from her home and that it took her precisely 16 minutes to travel between the two locations. She 

does a quick calculation to determine her average velocity during the trip:

Average Speed and Velocity: Return Journey

Satisfied with her little exercise, Andrea turns the car around to see if she can beat her 16-minute 
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time. Successful, she arrives home without a speeding ticket in 15 minutes. Andrea calculates her 

average speed for the entire journey to ETS and back home:

Is this the same as her average velocity? Andrea reminds herself that, though her odometer reads 

20 miles, her net displacement—and consequently her average velocity over the entire length of 

the trip—is zero. SAT II Physics is not going to get her with any trick questions like that!

Kinematics with Graphs 

Since  you  are  not  allowed  to  use  calculators,  SAT II  Physics  places  a  heavy  emphasis  on 

qualitative problems. A common way of testing kinematics qualitatively is to present you with a 

graph  plotting  position  vs.  time,  velocity  vs.  time,  or  acceleration  vs.  time  and  to  ask  you 

questions about the motion of the object represented by the graph. Because SAT II Physics is 

entirely made up of multiple-choice questions,  you won’t need to  know how to draw graphs; 

you’ll just have to interpret the data presented in them.

Knowing how to read such graphs quickly and accurately will not only help you solve problems of 

this sort, it will also help you visualize the often-abstract realm of kinematic equations. In the 

examples that follow, we will examine the movement of an ant running back and forth along a 

line.

Position vs. Time Graphs
Position  vs.  time  graphs  give  you  an  easy  and  obvious  way  of  determining  an  object’s 

displacement at any given time, and a subtler way of determining that object’s velocity at any 

given time. Let’s put these concepts into practice by looking at the following graph charting the 

movements of our friendly ant.

Any point on this graph gives us the position of the ant at a particular moment in time. For 

instance, the point at (2,–2) tells us that, two seconds after it started moving, the ant was two 

38



centimeters to the left of its starting position, and the point at (3,1) tells us that, three seconds after 

it started moving, the ant is one centimeter to the right of its starting position. 

Let’s read what the graph can tell us about the ant’s movements. For the first two seconds, the ant 

is moving to the left. Then, in the next second, it reverses its direction and moves quickly to y = 1. 

The ant then stays still at  y = 1 for three seconds before it turns left again and moves back to 

where it started. Note how concisely the graph displays all this information.

Calculating Velocity

We know the ant’s displacement, and we know how long it takes to move from place to place. 

Armed with this information, we should also be able to determine the ant’s velocity, since velocity 

measures the rate of change of displacement over time. If displacement is given here by the vector 

y, then the velocity of the ant is

If you recall, the slope of a graph is a measure of rise over run; that is, the amount of change in the 

y direction divided by the amount of change in the x direction. In our graph, is the change in 

the y direction and is the change in the x direction, so v is a measure of the slope of the graph. 

For any position vs. time graph, the velocity at time t is equal to the slope of the line at t. In a 

graph made up of straight lines, like the one above, we can easily calculate the slope at each point 

on the graph, and hence know the instantaneous velocity at any given time. 

We can tell that the ant has a velocity of zero from t = 3 to t = 6, because the slope of the line at 

these points is zero. We can also tell that the ant is cruising along at the fastest speed between t = 2 

and  t = 3, because the position vs. time graph is steepest between these points. Calculating the 

ant’s average velocity during this time interval is a simple matter of dividing rise by run, as we’ve 

learned in math class.

Average Velocity

How about the average velocity between t = 0 and t = 3? It’s actually easier to sort this out with a 

graph in front of us, because it’s easy to see the displacement at  t = 0 and t = 3, and so that we 

don’t confuse displacement and distance.

Average Speed

Although the total displacement in the first three seconds is one centimeter to the right, the total 

distance traveled is two centimeters to the left, and then three centimeters to the right, for a grand 

total of five centimeters. Thus, the average speed is not the same as the average velocity of the ant. 

Once we’ve calculated the total distance traveled by the ant, though, calculating its average speed 

is not difficult:

39



Curved Position vs. Time Graphs

This is all well and good, but how do you calculate the velocity of a curved position vs. time 

graph? Well, the bad news is that you’d need calculus. The good news is that SAT II Physics 

doesn’t expect you to use calculus, so if you are given a curved position vs. time graph, you will 

only be asked qualitative questions and won’t be expected to make any calculations. A few points 

on the graph will probably be labeled, and you will have to identify which point has the greatest or 

least velocity. Remember, the point with the greatest slope has the greatest velocity, and the point 

with the least slope has the least velocity. The turning points of the graph, the tops of the “hills” 

and the bottoms of the “valleys” where the slope is zero, have zero velocity. 

In this graph, for example, the velocity is zero at points A and C, greatest at point D, and smallest 

at point B. The velocity at point B is smallest because the slope at that point is negative. Because 

velocity is a vector quantity, the velocity at B would be a large negative number. However, the 

speed at B is greater even than the speed at D: speed is a scalar quantity, and so it is always 

positive. The slope at B is even steeper than at D, so the speed is greatest at B.

Velocity vs. Time Graphs
Velocity vs. time graphs are the most eloquent kind of graph we’ll be looking at here. They tell us 

very directly what the velocity of an object is at any given time, and they provide subtle means for 

determining both the position and acceleration of the same object over time. The “object” whose 

velocity is graphed below is our ever-industrious ant, a little later in the day.
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We can learn two things about the ant’s velocity by a quick glance at the graph. First, we can tell 

exactly how fast it is going at any given time. For instance, we can see that, two seconds after it 

started to move, the ant is moving at 2 cm/s. Second, we can tell in which direction the ant is 

moving. From t = 0 to t = 4, the velocity is positive, meaning that the ant is moving to the right. 

From t = 4 to t = 7, the velocity is negative, meaning that the ant is moving to the left.

Calculating Acceleration

We can calculate acceleration on a velocity vs. time graph in the same way that we calculate 

velocity on a position vs. time graph. Acceleration is the rate of change of the velocity vector, 

, which expresses itself as the slope of the velocity vs. time graph. For a velocity vs. time 

graph, the acceleration at time t is equal to the slope of the line at t. 

What is the acceleration of our ant at t = 2.5 and t = 4? Looking quickly at the graph, we see that 

the slope of the line at t = 2.5 is zero and hence the acceleration is likewise zero. The slope of the 

graph  between  t = 3 and  t = 5 is  constant,  so  we  can  calculate  the  acceleration  at  t = 4 by 

calculating the average acceleration between t = 3 and t = 5:

The minus sign tells us that acceleration is in the leftward direction, since we’ve defined the y-

coordinates in such a way that right is positive and left is negative. At t = 3, the ant is moving to 

the right at 2 cm/s, so a leftward acceleration means that the ant begins to slow down. Looking at 

the graph, we can see that the ant comes to a stop at t = 4, and then begins accelerating to the right.

Calculating Displacement

Velocity vs. time graphs can also tell us about an object’s displacement. Because velocity is a 

measure of displacement over time, we can infer that:

Graphically, this means that the displacement in a given time interval is equal to the area under 

the graph during that same time interval. If the graph is above the t-axis, then the positive 
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displacement is the area between the graph and the t-axis. If the graph is below the t-axis, then the 

displacement is negative, and is the area between the graph and the t-axis. Let’s look at two 

examples to make this rule clearer.

First, what is the ant’s displacement between  t = 2 and  t = 3? Because the velocity is constant 

during this time interval, the area between the graph and the t-axis is a rectangle of width 1 and 

height 2. 

The displacement between t = 2 and t = 3 is the area of this rectangle, which is 1 cm/s s = 2 cm 

to the right. 

Next, consider the ant’s displacement between t = 3 and t = 5. This portion of the graph gives us 

two triangles, one above the t-axis and one below the t-axis. 

Both triangles have an area of 1 /2(1 s)(2 cm/s) = 1 cm. However, the first triangle is above the t-

axis, meaning that displacement is positive, and hence to the right, while the second triangle is 

below the t-axis, meaning that displacement is negative, and hence to the left. The total 

displacement between t = 3 and t = 5 is:

In other words, at t = 5, the ant is in the same place as it was at t = 3.

Curved Velocity vs. Time Graphs

As with position vs. time graphs, velocity vs. time graphs may also be curved. Remember that 

regions with a steep slope indicate rapid acceleration or deceleration, regions with a gentle slope 

indicate small acceleration or deceleration, and the turning points have zero acceleration.

42



Acceleration vs. Time Graphs
After looking at position vs. time graphs and velocity vs. time graphs, acceleration vs. time graphs 

should not be threatening. Let’s look at the acceleration of our ant at another point in its dizzy day.

Acceleration vs. time graphs give us information about acceleration and about velocity. SAT II 

Physics generally sticks to problems that involve a constant acceleration. In this graph, the ant is 

accelerating at 1 m/s2 from t = 2 to t = 5 and is not accelerating between t = 6 and t = 7; that is, 

between t = 6 and t = 7 the ant’s velocity is constant.

Calculating Change in Velocity

Acceleration vs. time graphs tell us about an object’s velocity in the same way that velocity vs. 

time graphs tell us about an object’s displacement. The change in velocity in a given time interval  

is equal to the area under the graph during that same time interval. Be careful: the area between 

the graph and the t-axis gives the change in velocity, not the final velocity or average velocity over 

a given time period.

What is the ant’s change in velocity between t = 2 and t = 5? Because the acceleration is constant 

during this time interval, the area between the graph and the t-axis is a rectangle of height 1 and 

length 3. 

The area of the shaded region, and consequently the change in velocity during this time interval, is 

1 cm/s2 · 3 s = 3 cm/s to the right. This doesn’t mean that the velocity at t = 5 is 3 cm/s; it simply 
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means that the velocity is 3 cm/s greater than it was at t = 2. Since we have not been given the 

velocity at t = 2, we can’t immediately say what the velocity is at t = 5.

Summary of Rules for Reading Graphs
You may have trouble recalling when to look for the slope and when to look for the area under the 

graph. Here are a couple handy rules of thumb:

1. The slope on a given graph is equivalent to the quantity we get by dividing the y-axis by 

the x-axis. For instance, the y-axis of a position vs. time graph gives us displacement, and 

the x-axis gives us time. Displacement divided by time gives us velocity, which is what 

the slope of a position vs. time graph represents. 

2. The area under a given graph is equivalent to the quantity we get by multiplying the x-

axis and the  y-axis. For instance, the  y-axis of an acceleration vs. time graph gives us 

acceleration, and the  x-axis gives us time. Acceleration multiplied by time gives us the 

change in velocity, which is what the area between the graph and the x-axis represents.

We can summarize what we know about graphs in a table:

One-Dimensional Motion with Uniform Acceleration 

Many introductory physics problems can be simplified to the special case of uniform motion in 

one dimension with constant acceleration. That is, most problems will involve objects moving in a 

straight  line  whose  acceleration  doesn’t  change  over  time.  For  such  problems,  there  are  five 

variables that are potentially relevant: the object’s position, x; the object’s initial velocity, ; the 

object’s final velocity,  v; the object’s acceleration,  a; and the elapsed time,  t. If you know any 

three of these variables, you can solve for a fourth. Here are the five  kinematic equations that 

you should memorize and hold dear to your heart:
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The variable represents the object’s position at t = 0. Usually, = 0.

You’ll  notice  there  are  five  equations,  each  of  which  contain  four  of  the  five  variables  we 

mentioned above. In the first equation, a is missing; in the second, x is missing; in the third, v is 

missing;  in  the  fourth,  is  missing;  and  in  the  fifth,  t is  missing.  You’ll  find  that  in  any 

kinematics problem, you will know three of the five variables, you’ll have to solve for a fourth, 

and the fifth will play no role in the problem. That means you’ll have to choose the equation that 

doesn’t contain the variable that is irrelavent to the problem. 

Learning to Read Verbal Clues
Problems will  often give  you variables  like  t or  x,  and then give you verbal  clues  regarding 

velocity and acceleration. You have to learn to translate such phrases into kinematics-equation-

speak:
When They Say . . . They Mean . . .

“. . . starts from rest . . .”

“. . . moves at a constant velocity . . .” a = 0

“. . . comes to rest . . . ” v = 0 

Very often,  problems in  kinematics  on SAT II  Physics  will  involve  a  body falling  under  the 

influence of gravity. You’ll find people throwing balls over their heads, at targets, and even off the 

Leaning  Tower  of  Pisa.  Gravitational  motion  is  uniformly  accelerated  motion:  the  only 

acceleration involved is the constant pull of gravity,  –9.8  m/s2  toward the center of the Earth. 

When dealing with this constant, called g, it is often convenient to round it off to –10 m/s2.

EXAMPLE

A student throws a ball up in the air with an initial velocity of 12 m/s and then catches it as it comes 
back down to him. What is the ball’s velocity when he catches it? How high does the ball travel? How 
long does it take the ball to reach its highest point?
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Before we start writing down equations and plugging in numbers, we need to choose a coordinate 

system. This is usually not difficult, but it is vitally important. Let’s make the origin of the system 

the point where the ball is released from the student’s hand and begins its upward journey, and 

take the up direction to be positive and the down direction to be negative.

We could have chosen other coordinate systems—for instance, we could have made the origin the 

ground  on which  the  student  is  standing—but  our  choice  of  coordinate  system is  convenient 

because in it, = 0, so we won’t have to worry about plugging a value for into our equation. 

It’s usually possible, and a good idea, to choose a coordinate system that eliminates . Choosing 

the up direction as positive is simply more intuitive, and thus less likely to lead us astray. It’s 

generally  wise also to choose your  coordinate  system so that  more variables will  be positive 

numbers than negative ones, simply because positive numbers are easier to deal with.

WHAT IS THE BALL’S VELOCITY WHEN HE CATCHES IT?

We can determine the answer to this question without any math at all. We know the initial velocity, 

m/s,  and  the  acceleration  due  to  gravity,  m/s2,  and  we  know  that  the 

displacement is x = 0 since the ball’s final position is back in the student’s hand where it started. 

We need to know the ball’s final velocity,  v, so we should look at the kinematic equation that 

leaves out time, t:

Because both x and are zero, the equation comes out to But don’t be hasty and give 

the answer as 12 m/s: remember that we devised our coordinate system in such a way that the 

down direction is negative, so the ball’s final velocity is –12 m/s.

HOW HIGH DOES THE BALL TRAVEL?

We know that at the top of the ball’s trajectory its velocity is zero. That means that we know that 

= 12 m/s, v = 0, and m/s2, and we need to solve for x:

HOW LONG DOES IT TAKE THE BALL TO REACH ITS HIGHEST 

POINT?

Having solved for  x  at the highest  point in the trajectory, we now know all four of the other 

variables related to this point, and can choose any one of the five equations to solve for t. Let’s 

choose the one that leaves out x: 

46



Note that there are certain convenient points in the ball’s trajectory where we can extract a third 

variable that isn’t mentioned explicitly in the question: we know that x = 0 when the ball is at the 

level of the student’s hand, and we know that v = 0 at the top of the ball’s trajectory.

Two-Dimensional Motion with Uniform Acceleration

If you’ve got the hang of 1-D motion, you should have no trouble at all with 2-D motion. The 

motion of any object moving in two dimensions can be broken into x- and y-components. Then it’s 

just a matter of solving two separate 1-D kinematic equations.

The most common problems of this kind on SAT II Physics involve projectile motion: the motion 

of an object that is shot, thrown, or in some other way launched into the air. Note that the motion 

or trajectory of a projectile is a parabola.

If we break this motion into x- and y-components, the motion becomes easy to understand. In the 

y direction, the ball is thrown upward with an initial velocity of and experiences a constant 

downward acceleration of g = –9.8 m/s2. This is exactly the kind of motion we examined in the 

previous section: if we ignore the x-component, the motion of a projectile is identical to the 

motion of an object thrown directly up in the air.

In  the  x  direction,  the  ball  is  thrown  forward  with  an  initial  velocity  of  and there  is  no 

acceleration acting in the  x direction to change this velocity. We have a very simple situation 

where and is constant.

SAT II Physics will probably not expect you to do much calculating in questions dealing with 

projectile motion. Most likely, it will ask about the relative velocity of the projectile at different 

points in its trajectory. We can calculate the  x- and  y-components separately and then combine 

them to find the velocity of the projectile at any given point:
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Because is constant, the speed will be greater or lesser depending on the magnitude of . To 

determine where the speed is least or greatest, we follow the same method as we would with the 

one-dimensional example we had in the previous section. That means that the speed of the 

projectile in the figure above is at its greatest at position F, and at its least at position C. We also 

know that the speed is equal at position B and position D, and at position A and position E.

The key with two-dimensional motion is to remember that you are not dealing with one complex 

equation of motion, but rather with two simple equations.

Key Formulas
Average Speed

average speed = 

Average 

Velocity

average velocity = 

Average 

Acceleration

average acceleration = 

One-

Dimensional 

Motion with 

Uniform 

Acceleration 

(a.k.a. “The 

Five Kinematic 

Equations”)

Velocity of Two-

Dimensional 

Projectiles

Practice Questions
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1. . An athlete runs four laps of a 400 m track. What is the athlete’s total displacement?
(A) –1600 m
(B) –400 m
(C) 0 m
(D) 400 m
(E) 1600 m

2. . Which of the following statements contains a reference to displacement?
  I.  “The  town  is  a  five  mile  drive  along  the  winding  country  road.”
 II.  “The  town  sits  at  an  altitude  of  940  m.”
III. “The town is ten miles north, as the crow flies.”
(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III

Questions  3  and 4  refer  to  a  car  that  travels  from point  A to  point  B in  four  hours,  and 
then from point  B back to point  A in  six  hours.  The road between point  A and point  B is 
perfectly straight, and the distance between the two points is 240 km.

3. . What is the car’s average velocity?
(A) 0 km/h
(B) 48 km/h
(C) 50 km/h
(D) 60 km/h
(E) 100 km/h

4. . What is the car’s average speed?
(A) 0 km/h
(B) 48 km/h
(C) 50 km/h
(D) 60 km/h
(E) 100 km/h

5. . A ball is dropped from the top of a building. Taking air resistance into account, which best describes 
the speed of the ball while it is moving downward?
(A) It will increase until it reaches the speed of light
(B) It will increase at a steady rate
(C) It will remain constant
(D) It will decrease
(E) Its rate of acceleration will decrease until the ball moves at a constant speed

49



6. . A car accelerates steadily so that it goes from a velocity of 20 m/s to a velocity of 40 m/s in 4 
seconds. What is its acceleration?
(A) 0.2 m/s2

(B) 4 m/s2

(C) 5 m/s2

(D) 10 m/s2

(E) 80 m/s2

Questions 7 and 8 relate to the graph of velocity vs. time of a moving particle plotted at 
right.

7. . What is the acceleration and displacement of the particle at point A?
(A) Acceleration decreasing, displacement decreasing
(B) Acceleration constant, displacement decreasing
(C) Acceleration increasing, displacement decreasing
(D) Acceleration decreasing, displacement increasing
(E) Acceleration increasing, displacement increasing

8. . How do the acceleration and displacement of the particle at point  B compare to the acceleration 
and displacement of the particle at point A?
(A) Acceleration is less, displacement is less
(B) Acceleration is less, displacement is the same
(C) Acceleration is less, displacement is greater
(D) Acceleration is greater, displacement is less
(E) Acceleration is greater, displacement is greater

9. . A sprinter starts from rest and accelerates at a steady rate for the first 50 m of a 100 m race, and 
then continues at a constant velocity for the second 50 m of the race. If the sprinter runs the 100 
m in a time of 10 s, what is his instantaneous velocity when he crosses the finish line?
(A) 5 m/s
(B) 10 m/s
(C) 12 m/s
(D) 15 m/s
(E) 20 m/s
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10. . A woman runs 40 m to the north in 6.0 s, and then 30 m to the east in 4.0Â s. What is the 
magnitude of her average velocity?
(A) 5.0 m/s
(B) 6.0 m/s
(C) 6.7 m/s
(D) 7.0 m/s
(E) 7.5 m/s

Explanations

1.      C     

Displacement is a vector quantity that measures the distance between the starting point and ending point, 

not taking the actual path traveled into account. At the end of four laps, the athlete will be back at the 

starting line for the track, so the athlete’s total displacement will be zero.

2.      D     

Statement I refers to distance, not displacement, since the five-mile distance is along a winding road and 

does not describe a straight-line path.

Both statements II and III, however, contain a reference to displacement. The altitude of a town is a 

measure of the straight-line distance between the town and sea level. “As the crow flies” is a common way of 

saying “in a straight-line path.” Neither statement II nor statement III describes a certain route between the 

two points in question: they simply describe how far apart those two points are.

3.      A     

Average velocity is a measure of total displacement divided by total time. Total displacement is the distance 

separating the starting point and the finishing point. Since the car both starts and finishes at point A, its total 

displacement is zero, so its average velocity is also zero.

4.      B     

Average speed is a measure of total distance traveled divided by the total time of the trip. Solving this 

problem calls for a single calculation:

5.      E     
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The force of air resistance against a ball increases as the ball accelerates. At a certain point, the force of air 

resistance will be equal to the force of gravity, and the net force acting on the ball will be zero. At this point, 

its velocity will remain constant. This velocity is known as an object’s “terminal velocity,” and it explains why, 

in real life, many falling objects don’t continue accelerating all the way to the ground.

6.      C     

Acceleration is a measure of the change in velocity over time. The car’s change in velocity is 40 – 20 = 20 

m/s. Since this change in velocity takes place over 4 seconds, the car’s acceleration is

7.      C     

Point A is below the t-axis, which means that the velocity is negative. Since velocity is the change in 

displacement over time, we can conclude that if the velocity is negative, then the displacement is decreasing.

Acceleration is given by the slope of the graph. Since the line at point A has a positive slope, we know that 

the acceleration is increasing.

8.      C     

Acceleration is given by the slope of the line. As we can see, the slope is greater at point A than at point B, 

so the acceleration is less at point B.

The change in displacement is given by the area between the graph and the t-axis:

As we can see, between points A and B, a great deal more of the graph is above the t-axis than below it. This 

means that, overall, displacement is positive between these two points.

9.      D     

52



We know the total distance the sprinter covers, and we know the total time. However, since the acceleration 

isn’t uniform, we can’t calculate the velocity quite so simply. Rather, we need two equations, one for the first 

50 meters of the race, and another for the second 50 meters. In the first 50 meters, the sprinter accelerates 

from an initial velocity of to a final velocity of v in an amount of time, . We can express this 

relationship using the kinematic equation that leaves out velocity, and then solve for t:

In the last 50 meters of the race, the sprinter runs with a constant velocity of v, covering a distance of x = 

50 m in a time . Solving for , we find:

We know that the total time of the race, s. With this in mind, we can add the two sprint times 

together and solve for v:

10.      A     

Average velocity is given by the total displacement divided by the total time elapsed. The displacement is not 

simply 30 + 40 = 70 m, however, since the woman doesn’t run in a straight-line path. The 40 m north and 

the 30 m east are at right angles to one another, so we can use the Pythagorean Theorem to determine that 

the total displacement is in fact 50 m. Her displacement is 50 m over a total time of 10 s, so her average 

velocity is 5.0 m/s.

Dynamics

WHEREAS KINEMATICS IS THE STUDY OF objects in motion, dynamics is the study of the 

causes of motion. In other words, kinematics covers the “what” of motion, while dynamics covers 
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the  “how” and “why.”  Forces are  the  lifeblood  of  dynamics:  objects  move and change  their 

motion under the influence of different forces. Our main emphasis will be on Newton’s three laws, 

which succinctly summarize everything you need to know about dynamics.

Dynamics questions on SAT II Physics often call upon your knowledge of kinematics and vectors, 

but  these  questions  will  probably  be  simpler  than  the  problems  you’ve  encountered  in  your 

physics class. Because you won’t be asked to do any math that would require a calculator, you 

should focus on mastering the concepts that lie behind the math.

What Are Forces?

Whenever we lift something, push something, or otherwise manipulate an object, we are exerting 

a force. A force is defined very practically as a push or a pull—essentially it’s what makes things 

move. A force is a vector quantity, as it has both a magnitude and a direction. 

In  this  chapter, we will  use the example of pushing a  box along the floor to  illustrate  many 

concepts about forces, with the assumption that it’s a pretty intuitive model that you will have 

little trouble imagining.

Physicists use simple pictures called  free-body diagrams to illustrate the forces acting on an 

object. In these diagrams, the forces acting on a body are drawn as vectors originating from the 

center of the object. Following is a free-body diagram of you pushing a box into your new college 

dorm with force F.

Because force is a vector quantity, it follows the rules of vector addition. If your evil roommate 

comes and pushes the box in the opposite direction with exactly the same magnitude of force 

(force –F), the net force on the box is zero

Newton’s Laws

Isaac Newton first published his three laws of motion in 1687 in his monumental Mathematical 
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Principles of Natural Philosophy. In these three simple laws, Newton sums up everything there is 

to know about dynamics. This achievement is just one of the many reasons why he is considered 

one of the greatest physicists in history.

While a multiple-choice exam can’t ask you to write down each law in turn, there is a good chance 

you  will  encounter  a  problem where  you  are  asked  to  choose  which  of  Newton’s  laws  best 

explains a given physical process. You will also be expected to make simple calculations based on 

your knowledge of these laws. But by far the most important reason for mastering Newton’s laws 

is that, without them, thinking about dynamics is impossible. For that reason, we will dwell at 

some length on describing how these laws work qualitatively.

Newton’s First Law
Newton’s First Law describes how forces relate to motion:

An object at rest remains at rest, unless acted upon by a net force. An object in motion remains in  

motion, unless acted upon by a net force.

A soccer ball standing still on the grass does not move until someone kicks it. An ice hockey puck 

will continue to move with the same velocity until it hits the boards, or someone else hits it. Any 

change in the velocity of an object is evidence of a net force acting on that object. A world without 

forces would be much like the images we see of the insides of spaceships, where astronauts, pens, 

and food float eerily about.

Remember, since velocity is a vector quantity, a change in velocity can be a change either in the 

magnitude or the direction of the velocity vector. A moving object upon which no net force is 

acting doesn’t just maintain a constant speed—it also moves in a straight line.

But what does Newton mean by a  net force? The net force is the sum of the forces acting on a 

body. Newton is careful to use the phrase “net force,” because an object at rest will stay at rest if 

acted upon by forces with a sum of zero. Likewise, an object in motion will retain a constant 

velocity if acted upon by forces with a sum of zero.

Consider our previous example of you and your evil roommate pushing with equal but opposite 

forces on a box. Clearly, force is being applied to the box, but the two forces on the box cancel 

each other out exactly: F + –F = 0. Thus the net force on the box is zero, and the box does not 

move. 

Yet if your other, good roommate comes along and pushes alongside you with a force R, then the 

tie will be broken and the box will move. The net force is equal to:

Note that the acceleration, a, and the velocity of the box, v, is in the same direction as the net 

force.
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Inertia

The First Law is sometimes called the law of  inertia. We define inertia as the tendency of an 

object  to  remain  at  a  constant  velocity,  or  its  resistance  to  being  accelerated.  Inertia  is  a 

fundamental property of all matter and is important to the definition of mass.

Newton’s Second Law
To understand  Newton’s Second Law,  you must  understand the concept of mass.  Mass is an 

intrinsic scalar quantity: it  has no direction and is a property of an object, not of the object’s 

location. Mass is a measurement of a body’s inertia, or its resistance to being accelerated. The 

words mass and matter are related: a handy way of thinking about mass is as a measure of how 

much matter  there is  in an object,  how much “stuff”  it’s made out of.  Although in everyday 

language we use the words  mass and  weight interchangeably, they refer  to  two different,  but 

related, quantities in physics. We will expand upon the relation between mass and weight later in 

this chapter, after we have finished our discussion of Newton’s laws. 

We already have some intuition from everyday experience as to how mass, force, and acceleration 

relate. For example, we know that the more force we exert on a bowling ball, the faster it will roll. 

We also know that if the same force were exerted on a basketball, the basketball would move 

faster than the bowling ball because the basketball has less mass. This intuition is quantified in 

Newton’s Second Law:

Stated verbally, Newton’s Second Law says that the net force, F, acting on an object causes the 

object to accelerate, a. Since F = ma can be rewritten as a = F/m, you can see that the magnitude 

of the acceleration is directly proportional to the net force and inversely proportional to the mass, 

m. Both force and acceleration are vector quantities, and the acceleration of an object will always 

be in the same direction as the net force.

The unit of force is defined, quite appropriately, as a newton (N). Because acceleration is given in 

units of m/s2 and mass is given in units of kg, Newton’s Second Law implies that  1  N = 1 kg · 

m/s2. In other words, one newton is the force required to accelerate a one-kilogram body, by one 

meter per second, each second. 

Newton’s Second Law in Two Dimensions

With a problem that deals with forces acting in two dimensions, the best thing to do is to break 

each force vector into its x- and y-components. This will give you two equations instead of one:
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The component form of Newton’s Second Law tells us that the component of the net force in the 

direction is directly proportional to the resulting component of the acceleration in the 

direction, and likewise for the y-component.

Newton’s Third Law
Newton’s Third Law has become a cliché. The Third Law tells us that:

To every action, there is an equal and opposite reaction.

What this tells us in physics is that every push or pull produces not one, but two forces. In any 

exertion of force, there will always be two objects: the object exerting the force and the object on 

which the force is exerted. Newton’s Third Law tells us that when object  A exerts a force  F on 

object B, object B will exert a force –F on object A. When you push a box forward, you also feel 

the box pushing back on your hand. If Newton’s Third Law did not exist, your hand would feel 

nothing as it pushed on the box, because there would be no reaction force acting on it.

Anyone who has ever played around on skates knows that when you push forward on the wall of a 

skating rink, you recoil backward. 

Newton’s Third Law tells us that the force that the skater exerts on the wall, , is exactly 

equal in magnitude and opposite in direction to the force that the wall exerts on the skater, . 

The harder the skater pushes on the wall, the harder the wall will push back, sending the skater 

sliding backward.

Newton’s Third Law at Work

Here are three other examples of Newton’s Third Law at work, variations of which often pop up 

on SAT II Physics:

You push down with your hand on a desk, and the desk pushes upward with a force equal 
in magnitude to your push.

A brick is in free fall. The brick pulls the Earth upward with the same force that the Earth 

pulls the brick downward.
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When  you  walk,  your  feet  push  the  Earth  backward.  In  response,  the  Earth  pushes  your 

feet forward, which is the force that moves you on your way.

The second example may seem odd: the Earth doesn’t move upward when you drop a brick. But 

recall Newton’s Second Law: the acceleration of an object is inversely proportional to its mass (a 

= F/m). The Earth is about 1024 times as massive as a brick, so the brick’s downward acceleration 

of  –9.8 m/s2 is about  1024  times as great as the Earth’s upward acceleration. The brick exerts a 

force on the Earth, but the effect of that force is insignificant.

Problem Solving with Newton’s Laws

Dynamics problem solving in physics class usually involves difficult calculations that take into 

account a number of vectors on a free-body diagram. SAT II Physics won’t expect you to make 

any difficult calculations, and the test will usually include the free-body diagrams that you need. 

Your task will usually be to interpret free-body diagrams rather than to draw them.

EXAMPLE 1

The Three Stooges are dragging a 10 kg sled across a frozen lake. Moe pulls with force M, Larry pulls 

with force L, and Curly pulls with force C. If the sled is moving in the direction, and both Moe and 
Larry are exerting a force of 10 N, what is the magnitude of the force Curly is exerting? Assuming that 
friction is negligible, what is the acceleration of the sled? (Note: sin 30 = cos 60 = 0.500 and sin 60 = 
cos 30 = 0.866.)

The figure above gives us a free-body diagram that shows us the direction in which all forces are 

acting, but we should be careful to note that vectors in the diagram are not drawn to scale: we 

cannot estimate the magnitude of C simply by comparing it to M and L.

What is the magnitude of the force Curly is exerting?

Since we know that the motion of the sled is in the direction, the net force, M + L + C, must also 
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be in the direction. And since the sled is not moving in the direction, the y-component of the 

net force must be zero. Because the y-component of Larry’s force is zero, this implies:

where is the y-component of M and is the y-component of C. We also know:

If we substitute these two equations for and into the equation , we have:

What is the acceleration of the sled?

According to Newton’s Second Law, the acceleration of the sled is a = F/m. We know the sled has 

a mass of 10 kg, so we just need to calculate the magnitude of the net force in the -direction.

Now that we have calculated the magnitude of the net force acting on the sled, a simple 

calculation can give us the sled’s acceleration:

We have been told that the sled is moving in the direction, so the acceleration is also in the 

direction.

This example problem illustrates the importance of vector components. For the SAT II, you will 

need to break vectors into components on any problem that deals with vectors that are not all 

parallel or perpendicular. As with this example, however, the SAT II will always provide you with 

the necessary trigonometric values.

EXAMPLE 2
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Each of the following free-body diagrams shows the instantaneous forces, F, acting on a particle and 
the  particle’s  instantaneous  velocity,  v.  All  forces  represented  in  the  diagrams  are  of  the  same 
magnitude.

1. . In which diagram is neither the speed nor the direction of the particle being changed?

2. . In which diagram is the speed but not the direction of the particle being changed?

3. . In which diagram is the direction but not the speed of the particle being changed?

4. . In which diagram are both the speed and direction of the particle being changed?

The answer to question 1 is B. The two forces in that diagram cancel each other out, so the net 

force on the particle is zero. The velocity of a particle only changes under the influence of a net 

force.  The answer to question 2 is  C.  The net  force is  in the same direction as the particle’s 

motion, so the particle continues to accelerate in the same direction. The answer to question 3 is A. 

Because the force is acting perpendicular to the particle’s velocity, it does not affect the particle’s 

speed, but rather acts to pull the particle in a circular orbit. Note, however, that the speed of the 

particle only remains constant if the force acting on the particle remains perpendicular to it. As the 

direction  of  the  particle  changes,  the  direction  of  the  force  must  also  change  to  remain 

perpendicular to the velocity. This rule is the essence of circular motion, which we will examine in 

more detail later in this book. The answer to question 4 is D. The net force on the particle is in the 

opposite  direction of  the  particle’s motion,  so the  particle  slows down,  stops,  and then starts 

accelerating in the opposite direction. 

Types of Forces

There are a number of forces that act in a wide variety of cases and have been given specific 

names. Some of these, like friction and the normal force, are so common that we’re hardly aware 

of  them as  distinctive  forces.  It’s  important  that  you  understand how and when  these  forces 

function, because questions on SAT II Physics often make no mention of them explicitly, but 

expect you to factor them into your calculations. Some of these forces will also play an important 

role in the chapter on special problems in mechanics.

Weight
Although the words weight and mass are often interchangeable in everyday language, these words 

refer to two different quantities in physics. The mass of an object is a property of the object itself, 
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which reflects its resistance to being accelerated. The weight of an object is a measure of the 

gravitational force being exerted upon it,  and so it varies depending on the gravitational force 

acting on the object. Mass is a scalar quantity measured in kilograms, while weight is a vector 

quantity measuring force, and is represented in newtons. Although an object’s mass never changes, 

its weight depends on the force of gravity in the object’s environment. 

For example, a 10 kg mass has a different weight on the moon than it does on Earth. According to 

Newton’s Second Law, the weight of a 10 kg mass on Earth is

This force is directed toward the center of the Earth. On the moon, the acceleration due to gravity 

is roughly one-sixth that on Earth. Therefore, the weight of a 10 kg mass on the moon is only 

about 16.3 N toward the center of the moon.

The Normal Force
The normal force always acts perpendicular (or “normal”) to the surface of contact between two 

objects. The normal force is a direct consequence of Newton’s Third Law. Consider the example 

of a 10 kg box resting on the floor. The force of gravity causes the box to push down upon the 

ground with a force, W, equal to the box’s weight. Newton’s Third Law dictates that the floor must 

apply an equal and opposite force, N = –W, to the box. As a result, the net force on the box is zero, 

and, as we would expect, the box remains at rest. If there were no normal force pushing the box 

upward, there would be a net force acting downward on the box, and the box would accelerate 

downward

Be careful not to confuse the normal force vector N with the abbreviation for newtons, N. It can be 

a bit confusing that both are denoted by the same letter of the alphabet, but they are two totally 

different entities. 

EXAMPLE

A person pushes downward on a box of weight W with a force F. What is the normal force, N, acting 
on the box?

The total force pushing the box toward the ground is  W +  F.  From Newton’s Third Law, the 
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normal force exerted on the box by the floor has the same magnitude as  W + F but is directed 

upward. Therefore, the net force on the box is zero and the box remains at rest.

Friction
Newton’s First Law tells us that objects in motion stay in motion unless a force is acting upon 

them, but experience tells us that when we slide coins across a table, or push boxes along the floor, 

they slow down and come to a stop. This is not evidence that Newton was wrong; rather, it shows 

that there is a force acting upon the coin or the box to slow its motion. This is the force of friction, 

which is at work in every medium but a vacuum, and is the bugbear of students pushing boxes 

across the sticky floors of dorm rooms everywhere.

Roughly  speaking,  frictional  forces  are  caused  by  the  roughness  of  the  materials  in  contact, 

deformations in the materials, and molecular attraction between materials. You needn’t worry too 

much over the causes of friction, though: SAT II Physics isn’t going to test you on them. The most 

important thing to remember about frictional forces is that they are always parallel to the plane of 

contact between two surfaces, and opposite to the direction that the object is being pushed or 

pulled. 

There are two main types of friction:  static friction and kinetic friction. Kinetic friction is the 

force between two surfaces moving relative to one another, whereas static friction is the force 

between two surfaces that are not moving relative to one another. 

Static Friction

Imagine, once more, that you are pushing a box along a floor. When the box is at rest, it takes 

some effort to get it to start moving at all. That’s because the force of static friction is resisting 

your push and holding the box in place.
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In the diagram above, the weight and the normal force are represented as W and N respectively, 

and the force applied to the box is denoted by . The force of static friction is represented by 

, where . The net force on the box is zero, and so the box does not move. 

This is what happens when you are pushing on the box, but not hard enough to make it budge. 

Static  friction  is  only  at  work  when  the  net  force  on  an  object  is  zero,  and  hence  when 

. If there is a net force on the object, then that object will be in motion, and kinetic 

rather than static friction will oppose its motion.

Kinetic Friction

The force of static friction will only oppose a push up to a point. Once you exert a strong enough 

force, the box will begin to move. However, you still have to keep pushing with a strong, steady 

force to keep it moving along, and the box will quickly slide to a stop if you quit pushing. That’s 

because the force of kinetic friction is pushing in the opposite direction of the motion of the box, 

trying to bring it to rest. 

Though the force of kinetic friction will always act in the opposite direction of the force of the 

push, it need not be equal in magnitude to the force of the push. In the diagram above, the 

magnitude of is less than the magnitude of . That means that the box has a net force 

in the direction of the push, and the box accelerates forward. The box is moving at velocity v in 

the diagram, and will speed up if the same force is steadily applied to it. If were equal to 

, the net force acting on the box would be zero, and the box would move at a steady 

velocity of v, since Newton’s First Law tells us that an object in motion will remain in motion if 

there is no net force acting on it. If the magnitude of were less than the magnitude of 

, the net force would be acting against the motion, and the box would slow down until it came to a 

rest.

The Coefficients of Friction

The  amount  of  force  needed  to  overcome  the  force  of  static  friction  on  an  object,  and  the 
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magnitude of the force of kinetic friction on an object, are both proportional to the normal force 

acting on the object in question. We can express this proportionality mathematically as follows:

where is the coefficient of kinetic friction, is the coefficient of static friction, and N is the 

magnitude of the normal force. The coefficients of kinetic and static friction are constants of 

proportionality that vary from object to object. 

Note that the equation for static friction is for the  maximum value of the static friction. This is 

because the force of static friction is never greater than the force pushing on an object. If a box has 

a mass of 10 kg and = 0.5, then:

If you push this box with a force less than 49 newtons, the box will not move, and consequently 

the net force on the box must be zero. If an applied force is less than , then = 

– . 

Three Reminders

Whenever you need to calculate a frictional force on SAT II Physics, you will be told the value of 

, which will fall between 0 and 1. Three things are worth noting about frictional forces:

1. The smaller µ is, the more slippery the surface. For instance, ice will have much lower 

coefficients of friction than Velcro. In cases where  , the force of friction is zero, 

which is the case on ideal frictionless surfaces. 

2. The coefficient of kinetic friction is smaller than the coefficient of static friction. That 

means it takes more force to start a stationary object moving than to keep it in motion. 

The reverse would be illogical:  imagine if  you could push on an object  with a force 

greater than the maximum force of static friction but less than the force of kinetic friction. 

That would mean you could push it hard enough to get it to start moving, but as soon as it 

starts moving, the force of kinetic friction would push it backward. 

3. Frictional forces are directly proportional to the normal force. That’s why it’s harder 

to slide a heavy object along the floor than a light one. A light coin can slide several 

meters across a table because the kinetic friction, proportional to the normal force, is quite 

small.

EXAMPLE
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A student pushes a box that weighs 15 N with a force of 10 N at a 60Âº angle to the perpendicular. 
The maximum coefficient of static friction between the box and the floor is 0.4. Does the box move? 
Note that sin 60Âº = 0.866 and cos 60Âº = 0.500.

In order to solve this problem, we have to determine whether the horizontal component of is 

of greater magnitude than the maximum force of static friction.

We can break the  vector into horizontal and vertical components. The vertical component 

will  push  the  box  harder  into  the  floor,  increasing  the  normal  force,  while  the  horizontal 

component  will  push  against  the  force  of  static  friction.  First,  let’s  calculate  the  vertical 

component of the force so that we can determine the normal force, N, of the box:

If we add this force to the weight of the box, we find that the normal force is 15 + 5.0 = 20 N. 

Thus, the maximum force of static friction is:

The force pushing the box forward is the horizontal component of , which is:

As we can see, this force is just slightly greater than the maximum force of static friction opposing 

the push, so the box will slide forward.

Tension
Consider a box being pulled by a rope. The person pulling one end of the rope is not in contact 

with the box, yet we know from experience that the box will move in the direction that the rope is 

pulled. This occurs because the force the person exerts on the rope is transmitted to the box. 

The force exerted on the box from the rope is called the  tension force,  and comes into play 

whenever a force is transmitted across a rope or a cable. The free-body diagram below shows us a 

box being pulled by a rope, where  W is the weight of the box,  N  is the normal force,  T is the 

tension force, and is the frictional force.
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In cases like the diagram above, it’s very easy to deal with the force of tension by treating the 

situation just as if there were somebody behind the box pushing on it. We’ll find the force of 

tension coming up quite a bit in the chapter on special problems in mechanics, particularly when 

we deal with pulleys.

Key Formulas
Newton’s 

Second 

Law

Formula 

for Force 

of Kinetic 

Friction

Formula 

for Force 

of 

Maximum 

Static 

Friction

Practice Questions
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1. . Each of the figures below shows a particle moving with velocity v, and with one or two forces of 
magnitude F acting upon it. In which of the figures will v remain constant?
(A)

(B)

(C)

(D)

(E)

2. . In which of the following examples is a net force of zero acting on the object in question?
  I.  A  car  drives  around  a  circular  racetrack  at  a  constant  speed
 II.  A  person  pushes  on  a  door  to  hold  it  shut
III. A ball, rolling across a grassy field, slowly comes to a stop
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

3. . A force F is acting on an object of mass m to give it an acceleration of a. If m is halved and F is 
quadrupled, what happens to a?
(A) It is divided by eight
(B) It is divided by two
(C) It remains unchanged
(D) It is multiplied by two
(E) It is multiplied by eight
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4. .
A force pushes on an object of mass 10 kg with a force of 5 N to the right. A force pushes on 
the same object with a force of 15 N to the left. What is the acceleration of the object?
(A) 0.3 m/s2 to the left
(B) 0.5 m/s2 to the left
(C) 1 m/s2 to the left
(D) 1.5 m/s2 to the left
(E) 10 m/s2 to the left

5. . In the figure above, a block is suspended from two ropes, so that it hangs motionless in the air. If 

the magnitude of is 10.0 N, what is the magnitude of ? Note that sin 30 = cos 60 = 0.500, 
and sin 60 = cos 30 = 0.866.
(A) 0.433 N
(B) 0.500 N
(C) 0.866 N
(D) 10.0 N
(E) 17.3 N

6. . In scenario 1, a person pulls with a force F on a string of length 2d that is connected to a spring 
scale. The other end of the spring scale is connected to a post by a string of length d. In scenario 
2, the person pulls on the string of length 2d with a force of F, and a second person stands where 
the post was in scenario 1, and also pulls with a force of  F. If the spring scale reads 50 N in 
scenario 1, what does the spring scale read in scenario 2?
(A) 50 N
(B) 67 N
(C) 100 N
(D) 133 N
(E) 150 N
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7. . In the figure above, a person is dragging a box attached to a string along the ground. Both the 
person and the box are moving to the right with a constant velocity, v. What horizontal forces are 
acting on the person?
(A) The tension force in the string is pulling the person to the left
(B) The tension force in the string is pulling the person to the left, and the Earth is pushing the 

person to the right
(C) The tension force in the string is pulling the person to the left, and the Earth is pushing the 

person to the left
(D) The tension force in the string is pushing the person to the right, and the Earth is pushing the 

person to the right
(E) The tension force in the string is pushing the person to the right, and the Earth is pushing the 

person to the left

8. . What is the weight of a man whose mass is 80 kg?
(A) 8.1 N
(B) 70.2 N
(C) 80 N
(D) 89.8 N
(E) 784 N

9. . A 50 kg crate rests on the floor. The coefficient of static friction is 0.5. The force parallel to the floor 
needed to move the crate is most nearly:
(A) 25 N
(B) 50 N
(C) 125 N
(D) 250 N
(E) 500 N

10. . A person is pushing an object of mass m along the ground with a force F. The coefficient of kinetic 

friction between the object and the ground is . The object is accelerating, but then the person 
stops pushing and the object slides to a halt. The person then starts pushing on the object again 
with a force F, but the object doesn’t budge. The maximum coefficient of static friction between 

the object and the ground is . Which of the following statements is true?
(A)

(B)

(C)

(D)

(E) The scenario described is physically impossible

Explanations
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1.      D     

According to Newton’s First Law, an object maintains a constant velocity if the net force acting on it is zero. 

Since the two forces in D cancel each other out, the net force on the particle is zero.

2.      B     

Newton’s First Law tells us that a net force of zero is acting on an object if that object maintains a constant 

velocity. The car going around the racetrack in statement I has a constant speed, but since its direction is 

constantly changing (as it’s going in a circle), its velocity is also changing, and so the net force acting on it 

isn’t zero.

The person in statement II exerts a force on the door, but neither she nor the door actually moves: the force 

is exerted so as to hold the door in place. If the door isn’t moving, its velocity is constant at zero, and so the 

net force acting on the door must also be zero.

Though no one is pushing on the soccer ball in statement III, some force must be acting on it if it slows down 

and comes to a stop. This is a result of the force of friction between the ball and the grass: if there were no 

friction, the ball would keep rolling.

Since the net force is zero only in statement II, B is the correct answer.

3.      E     

Newton’s Second Law tells us that F = ma. From this we can infer that a = F/m. Since F is directly 

proportional to a, quadrupling F will also quadruple a. And since m is inversely proportional to a, halving m 

will double a. We’re quadrupling a and then doubling a, which means that, ultimately, we’re multiplying a by 

eight.

4.      C     

Newton’s Second Law tells us that . The net force acting on the object is: 15 N left – 5 N right = 

10 N left. With that in mind, we can simply solve for A:

5.      E     
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Since the block is motionless, the net force acting on it must be zero. That means that the component of 

that pulls the block to the left must be equal and opposite to the component of that pulls the block to the 

right. The component pulling the block to the right is sin 60 = (0.866)(10.0 N). The component pulling 

the block to the left is sin 30 = 0.500 . With these components, we can solve for :

6.      A     

In both cases, the spring scale isn’t moving, which means that the net force acting on it is zero. If the person 

in scenario 1 is pulling the spring scale to the right with force F, then there must be a tension force of F in 

the string attaching the spring scale to the post in order for the spring scale to remain motionless. That 

means that the same forces are acting on the spring scale in both scenarios, so if the spring scale reads 50 N 

in scenario 1, then it must also read 50 N in scenario 2. Don’t be fooled by the lengths of the pieces of string. 

Length has no effect on the tension force in a string.

7.      B     

Solving this problem demands an understanding of Newton’s Third Law. Since the person exerts a force to 

pull the string to the right, the string must exert an equal and opposite force to pull the person to the left. 

Further, we know that the person moves at a constant velocity, so the net force acting on the person is zero. 

That means there must be a force pushing the person to the right to balance the string’s reaction force 

pulling to the left. That other force is the reaction force of the Earth: the person moves forward by pushing 

the Earth to the left, and the Earth in turn pushes the person to the right. This may sound strange, but it’s 

just a fancy way of saying “the person is walking to the right.”

8.      E     

The weight of any object is the magnitude of the force of gravity acting upon it. In the case of the man, this 

force has a magnitude of:

9.      D     
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The force needed to move the crate is equal and opposite to the maximum force of static friction, 

, where is the coefficient of static friction. Therefore, the magnitude of the force parallel to 

the floor is

10.      C     

When the person is pushing on the moving box, the box accelerates, meaning that F is greater than the force 

of kinetic friction, . When the box is at rest, the person is unable to make the box move, which means 

that the maximum force of static friction, , is greater than or equal to F.

You may be tempted by D: the box isn’t moving, so the force of static friction perfectly balances out the 

pushing force exerted by the person. However, is the maximum coefficient of static friction. The force of 

static friction is always only enough to resist the pushing force, so it’s possible that the person could apply a 

greater force and still not make the object budge. Also, note that B states a physical impossibility. The 

coefficient of static friction is always greater than the coefficient of kinetic friction.

Work, Energy, and Power

THERE ARE A NUMBER OF TECHNICAL terms in physics that have a nontechnical equivalent 

in ordinary usage. An example we saw in the previous chapter is force. We can talk about force in 

conversation without meaning a push or a pull that changes the velocity of an object, but it’s easy 

to see that that technical definition has something in common with the ordinary use of the word 

force.  The same is true with  work,  energy,  and  power.  All three of these words have familiar 

connotations in ordinary speech, but in physics they take on a technical meaning. As with force, 

the ordinary meaning of these words provides us with some hint as to their meaning in physics. 

However, we shouldn’t rely too heavily on our intuition, since, as we shall see, there are some 

significant divergences from what common sense tells us.

The  related  phenomena  of  work,  energy,  and  power  find  their  way  into  a  good  number  of 

questions on SAT II Physics. And energy, like force, finds its way into almost every aspect of 

physics, so a mastery of this subject matter is very important. The conservation of energy is one 

of the most important laws of physics, and conveniently serves as a tool to sort out many a head-

splitting physics problem.

Work
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When we are told that a person pushes on an object with a certain force, we only know how hard 

the person pushes: we don’t know what the pushing accomplishes. Work, W, a scalar quantity that 

measures the product of the force exerted on an object and the resulting displacement of that 

object, is a measure of what an applied force accomplishes. The harder you push an object, and the 

farther that object travels, the more work you have done. In general, we say that work is done by a 

force, or  by the object or person exerting the force,  on the object on which the force is acting. 

Most  simply,  work  is  the  product  of  force  times  displacement.  However,  as  you  may  have 

remarked, both force and displacement are vector quantities, and so the direction of these vectors 

comes into play when calculating the work done by a given force. Work is measured in units of 

joules (J), where 1 J = 1 N · m = 1 kg · m2/s2.

Work When Force and Displacement Are Parallel
When the force exerted on an object is in the same direction as the displacement of the object, 

calculating work is a simple matter of multiplication. Suppose you exert a force of 10 N on a box 

in the northward direction, and the box moves 5 m to the north. The work you have done on the 

box is N · m = 50 J. If force and displacement are parallel to one another, then 

the work done by a force is simply the product of the magnitude of the force and the magnitude of 

the displacement.

Work When Force and Displacement Are Not Parallel
Unfortunately,  matters  aren’t  quite  as  simple  as  scalar  multiplication  when  the  force  and 

displacement  vectors  aren’t  parallel.  In  such  a  case,  we  define  work  as  the  product  of  the 

displacement of a body and the component of the force in the direction of that displacement. For 

instance, suppose you push a box with a force F along the floor for a distance s, but rather than 

pushing it directly forward, you push on it at a downward angle of 45º. The work you do on the 

box is not equal to  , the magnitude of the force times the magnitude of the displacement. 

Rather, it is equal to , the magnitude of the force exerted in the direction of the displacement 

times the magnitude of the displacement.

Some simple trigonometry shows us that , where is the angle between the F vector 

and the s vector. With this in mind, we can express a general formula for the work done by a force, 

which applies to all cases:

This formula also applies to the cases where F and s are parallel, since in those cases, , and 

, so W = Fs.

Dot Product
What the formula above amounts to is that work is the dot product of the force vector and the 

displacement vector. As we recall, the dot product of two vectors is the product of the magnitudes 
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of the two vectors multiplied by the cosine of the angle between the two vectors. So the most 

general vector definition of work is:

Review
The concept of work is actually quite straightforward, as you’ll see with a little practice. You just 

need to bear a few simple points in mind:

• If force and displacement are both in the same direction, the work done is the product of 

the magnitudes of force and displacement. 

• If  force  and  displacement  are  at  an  angle  to  one  another,  you  need  to  calculate  the 

component of the force that points in the direction of the displacement, or the component 

of the displacement that points in the direction of the force. The work done is the product 

of the one vector and the component of the other vector. 

• If force and displacement are perpendicular, no work is done.

Because of the way work is defined in physics, there are a number of cases that go against our 

everyday intuition. Work is not done whenever a force is exerted, and there are certain cases in 

which we might think that a great deal of work is being done, but in fact no work is done at all. 

Let’s look at some examples that might be tested on SAT II Physics:

• You do work on a 10 kg mass when you lift it off the ground, but you do no work to hold 

the same mass stationary in the air. As you strain to hold the mass in the air, you are 

actually making sure that it is not displaced. Consequently, the work you do to hold it is 

zero. 

• Displacement is a vector quantity that  is not the same thing as distance traveled. For 

instance, if a weightlifter raises a dumbbell 1 m, then lowers it to its original position, the 

weightlifter has not done any work on the dumbell. 

• When a force is perpendicular to the direction of an object’s motion, this force does no 

work on the object. For example, say you swing a tethered ball in a circle overhead, as in 

the diagram below. The tension force, T, is always perpendicular to the velocity, v, of the 

ball, and so the rope does no work on the ball.
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EXAMPLE

A water balloon of mass  m is dropped from a height  h. What is the work done on the balloon by 
gravity? How much work is done by gravity if the balloon is thrown horizontally from a height h with 

an initial velocity of ?

WHAT IS THE WORK DONE ON THE BALLOON BY GRAVITY?

Since the gravitational force of –mg is in the same direction as the water balloon’s displacement, –

h, the work done by the gravitational force on the ball is the force times the displacement, or W = 

mgh, where g = –9.8 m/s2. 

HOW MUCH WORK IS  DONE  BY  GRAVITY  IF  THE  BALLOON IS 

THROWN HORIZONTALLY FROM A HEIGHT H WITH AN INITIAL 

VELOCITY OF V0?

The gravitational force exerted on the balloon is still –mg, but the displacement is different. The 

balloon has a displacement of –h in the y direction and d (see the figure below) in the x direction. 

But,  as  we recall,  the work done on the balloon by gravity  is  not  simply the  product  of  the 

magnitudes of the force and the displacement. We have to multiply the force by the component of 

the displacement that is parallel to the force. The force is directed downward, and the component 

of the displacement that is directed downward is  –h. As a result, we find that the work done by 

gravity is mgh, just as before.
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The work done by the force of gravity is the same if the object falls straight down or if it makes a 

wide parabola and lands 100 m to the east. This is because the force of gravity does no work when 

an object is transported horizontally, because the force of gravity is perpendicular to the horizontal 

component of displacement.

Work Problems with Graphs
There’s a good chance SAT II Physics may test your understanding of work by asking you to 

interpret a graph. This graph will most likely be a force vs. position graph, though there’s a chance 

it may be a graph of vs. position. Don’t let the appearance of trigonometry scare you: the 

principle of reading graphs is the same in both cases. In the latter case, you’ll be dealing with a 

graphic representation of a force that isn’t acting parallel to the displacement, but the graph will 

have already taken this  into  account.  Bottom line:  all  graphs  dealing with work  will  operate 

according to the same easy principles. The most important thing that you need to remember about 

these graphs is:

The work done in a force vs. displacement graph is equal to the area between the graph and the x-

axis during the same interval.

If you recall your kinematics graphs, this is exactly what you would do to read velocity on an 

acceleration vs. time graph, or displacement on a velocity vs. time graph. In fact, whenever you 

want  a  quantity  that  is  the  product  of  the  quantity  measured  by  the  y-axis  and  the  quantity 

measured by the x-axis, you can simply calculate the area between the graph and the x-axis.

EXAMPLE
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The graph above plots the force exerted on a box against the displacement of the box. What is the 
work done by the force in moving the box from x = 2 to x = 4? 

The work done on the box is equal to the area of the shaded region in the figure above, or the area 

of a rectangle of width 2 and height 4 plus the area of a right triangle of base 2 and height 2. 

Determining the amount of work done is simply a matter of calculating the area of the rectangle 

and the area of the triangle, and adding these two areas together:

Curved Force vs. Position Graphs

If SAT II Physics throws you a curved force vs. position graph, don’t panic. You won’t be asked to 

calculate the work done, because you can’t do that without using calculus. Most likely, you’ll be 

asked to estimate the area beneath the curve for two intervals, and to select the interval in which 

the most, or least, work was done. In the figure below, more work was done between x = 6 and x = 

8 than between x = 2 and x = 4, because the area between the graph and the x-axis is larger for the 

interval between x = 6 and x = 8.

Energy

Energy is one of the central concepts of physics, and one of the most difficult to define. One of the 

reasons we have such a hard time defining it is because it appears in so many different forms. 
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There  is  the  kinetic and  potential  energy of  kinematic  motion,  the  thermal  energy of  heat 

reactions, the chemical energy of your discman batteries, the  mechanical energy of a machine, 

the  elastic  energy  that  helps  you  launch  rubber  bands,  the  electrical  energy  that  keeps  most 

appliances on this planet running, and even mass energy, the strange phenomenon that Einstein 

discovered and that has been put to such devastating effect in the atomic bomb. This is only a 

cursory list: energy takes on an even wider variety of forms.

How is it that an electric jolt, a loud noise, and a brick falling to the ground can all be treated 

using the same concept? Well, one way of defining energy is as a capacity to do work: any object 

or phenomenon that is capable of doing work contains and expends a certain amount of energy. 

Because anything that can exert a force or have a force exerted on it can do work, we find energy 

popping up wherever there are forces.

Energy, like work, is measured in joules (J). In fact, work is a measure of the transfer of energy. 

However, there are forms of energy that do not involve work. For instance, a box suspended from 

a string is doing no work, but it has  gravitational potential energy that will turn into work as 

soon as the string is cut. We will look at some of the many forms of energy shortly. First, let’s 

examine the important law of conservation of energy.

Conservation of Energy
As the name suggests, the law of conservation of energy tells us that the energy in the universe is 

constant. Energy cannot be made or destroyed, only changed from one form to another form. 

Energy can also be transferred via a force, or as heat. For instance, let’s return to the example 

mentioned earlier  of the box hanging by a string.  As it  hangs motionless,  it  has gravitational 

potential energy, a kind of latent energy. When we cut the string, that energy is converted into 

kinetic energy, or work, as the force of gravity acts to pull the box downward. When the box hits 

the ground, that kinetic energy does not simply disappear. Rather, it is converted into sound and 

heat energy: the box makes a loud thud and the impact between the ground and the box generates 

a bit of heat.

This law applies to any closed system. A closed system is a system where no energy leaves the 

system and goes into the outside world, and no energy from the outside world enters the system. It 

is virtually impossible to create a truly closed system on Earth, since energy is almost always 

dissipated through friction, heat, or sound, but we can create close approximations. Objects sliding 

over ice or air hockey tables move with a minimal amount of friction, so the energy in these 

systems remains nearly constant. Problems on SAT II Physics that quiz you on the conservation of 

energy will almost always deal with frictionless surfaces, since the law of conservation of energy 

applies only to closed systems. 

The  law  of  conservation  of  energy  is  important  for  a  number  of  reasons,  one  of  the  most 

fundamental being that it is so general: it applies to the whole universe and extends across all time. 

For the purposes of SAT II Physics, it helps you solve a number of problems that would be very 

difficult  otherwise.  For example,  you can often determine an object’s velocity quite easily by 

using this law, while it might have been very difficult or even impossible using only kinematic 

equations. We will see this law at work later in this chapter, and again when we discuss elastic and 

inelastic collisions in the chapter on linear momentum.

Forms of Energy 
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Though energy is always measured in joules, and though it can always be defined as a capacity to 

do work, energy manifests itself in a variety of different forms. These various forms pop up all 

over  SAT II  Physics,  and we will  look at  some additional  forms of energy when we discuss 

electromagnetism, relativity, and a number of other specialized topics. For now, we will focus on 

the kinds of energy you’ll find in mechanics problems.

Kinetic Energy
Kinetic energy is the energy a body in motion has by virtue of its motion. We define energy as the 

capacity to do work, and a body in motion is able to use its motion to do work. For instance, a cue 

ball on a pool table can use its motion to do work on the eight ball. When the cue ball strikes the 

eight ball, the cue ball comes to a stop and the eight ball starts moving. This occurs because the 

cue ball’s kinetic energy has been transferred to the eight ball.

There  are  many  types  of  kinetic  energy,  including  vibrational,  translational,  and  rotational. 

Translational kinetic energy, the main type, is the energy of a particle moving in space and is 

defined in terms of the particle’s mass, m, and velocity, v: 

For instance, a cue ball of mass 0.5 kg moving at a velocity of 2 m/s has a kinetic energy of 1/2 (0.5 

kg)(2 m/s)2 = 1 J.

The Work-Energy Theorem

If you recall, work is a measure of the transfer of energy. An object that has a certain amount of 

work done on it has that amount of energy transferred to it. This energy moves the object over a 

certain distance with a certain force; in other words, it is kinetic energy. This handy little fact is 

expressed in the work-energy theorem, which states that the net work done on an object is equal 

to the object’s change in kinetic energy:

For example, say you apply a force to a particle, causing it to accelerate. This force does positive 

work on the particle and increases its kinetic energy. Conversely, say you apply a force to 

decelerate a particle. This force does negative work on the particle and decreases its kinetic 

energy. If you know the forces acting on an object, the work-energy theorem provides a 

convenient way to calculate the velocity of a particle. 

EXAMPLE

A hockey puck of mass 1 kg slides across the ice with an initial velocity of 10 m/s. There is a 1 N force 
of friction acting against the puck. What is the puck’s velocity after it has glided 32 m along the ice?

If we know the puck’s kinetic energy after it has glided  32 m, we can calculate its velocity. To 

determine its kinetic energy at that point, we need to know its initial kinetic energy, and how much 

that kinetic energy changes as the puck glides across the ice.

First, let’s determine the initial kinetic energy of the puck. We know the puck’s initial mass and 

initial velocity, so we just need to plug these numbers into the equation for kinetic energy: 
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The friction between the puck and the ice decelerates the puck. The amount of work the ice does 

on the puck, which is the product of the force of friction and the puck’s displacement, is negative.

The work done on the puck decreases its kinetic energy, so after it has glided 32 m, the kinetic 

energy of the puck is 50 – 32 = 18 J. Now that we know the final kinetic energy of the puck, we 

can calculate its final velocity by once more plugging numbers into the formula for kinetic energy:

We could also have solved this problem using Newton’s Second Law and some kinematics, but the 

work-energy theorem gives us a quicker route to the same answer.

Potential Energy 
As we said before, work is the process of energy transfer. In the example above, the kinetic energy 

of the puck was transferred into the heat and sound caused by friction. There are a great number of 

objects, though, that spend most of their time neither doing work nor having work done on them. 

This book in your hand, for instance, is not doing any work right now, but the second you drop it

—whoops!—the force of gravity does some work on it, generating kinetic energy. Now pick up 

the book and let’s continue.

Potential energy, U, is a measure of an object’s unrealized potential to have work done on it, and is 

associated with that object’s position in space, or its configuration in relation to other objects. Any 

work done on an object converts its potential energy into kinetic energy, so the net work done on a 

given object is equal to the negative change in its potential energy:

Be very respectful of the minus sign in this equation. It may be tempting to think that the work 

done on an object increases its potential energy, but the opposite is true. Work converts potential 

energy into other forms of energy, usually kinetic energy. Remove the minus sign from the 

equation above, and you are in direct violation of the law of conservation of energy!

There are many forms of potential energy, each of which is associated with a different type of 

force. SAT II Physics usually confines itself to gravitational potential energy and the potential 

energy of a compressed spring. We will review gravitational potential energy in this section, and 

the potential energy of a spring in the next chapter.

Gravitational Potential Energy

Gravitational potential energy registers the potential for work done on an object by the force of 

gravity. For example, say that you lift a water balloon to height  h above the ground. The work 

done by the force of gravity as you lift the water balloon is the force of gravity, –mg, times the 

water balloon’s displacement, h. So the work done by the force of gravity is W = –mgh. Note that 
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there is a negative amount of work done, since the water balloon is being lifted upward, in the 

opposite direction of the force of gravity. 

By doing –mgh joules of work on the water balloon, you have increased its gravitational potential 

energy by  mgh joules (recall the equation  ). In other words, you have increased its 

potential to accelerate downward and cause a huge splash. Because the force of gravity has the 

potential to do mgh joules of work on the water balloon at height h, we say that the water balloon 

has mgh joules of gravitational potential energy.

For instance, a 50 kg mass held at a height of 4 m from the ground has a gravitational potential 

energy of:

The most important thing to remember is that the higher an object is off the ground, the greater its  

gravitational potential energy.

Mechanical Energy 
We now have equations relating work to both kinetic and potential energy:

Combining these two equations gives us this important result:

Or, alternatively,

As the kinetic energy of a system increases, its potential energy decreases by the same amount, 

and vice versa. As a result, the sum of the kinetic energy and the potential energy in a system is 

constant. We define this constant as E, the mechanical energy of the system:

This law, the conservation of mechanical energy, is one form of the more general law of 

conservation of energy, and it’s a handy tool for solving problems regarding projectiles, pulleys, 

springs, and inclined planes. However, mechanical energy is not conserved in problems involving 

frictional forces. When friction is involved, a good deal of the energy in the system is dissipated as 

heat and sound. The conservation of mechanical energy only applies to closed systems.

EXAMPLE 1

A student drops an object of mass 10 kg from a height of 5 m. What is the velocity of the object when 
it hits the ground? Assume, for the purpose of this question, that g = –10 m/s2.

Before the object is released, it  has a certain amount of gravitational  potential  energy, but no 

kinetic energy. When it hits the ground, it has no gravitational potential energy, since h = 0, but it 

has a certain amount of kinetic energy. The mechanical energy, E, of the object remains constant, 
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however. That means that the potential energy of the object before it is released is equal to the 

kinetic energy of the object when it hits the ground.

When the object is dropped, it has a gravitational potential energy of:

By the time it hits the ground, all this potential energy will have been converted to kinetic energy. 

Now we just need to solve for v:

EXAMPLE 2

Consider the above diagram of the trajectory of a thrown tomato:

1. . At what point is the potential energy greatest?

2. . At what point is the kinetic energy the least? 

3. . At what point is the kinetic energy greatest? 

4. . At what point is the kinetic energy decreasing and the potential energy increasing? 

5. . At what point are the kinetic energy and the potential energy equal to the values at position A?

The answer to question 1 is point B. At the top of the tomato’s trajectory, the tomato is the greatest 

distance above the ground and hence has the greatest potential energy.

The answer to question 2 is point B. At the top of the tomato’s trajectory, the tomato has the 

smallest velocity, since the y-component of the velocity is zero, and hence the least kinetic energy. 

Additionally, since mechanical energy is conserved in projectile motion, we know that the point 

where the potential energy is the greatest corresponds to the point where the kinetic energy is 
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smallest.

The answer to question 3 is point E. At the bottom of its trajectory, the tomato has the greatest 

velocity and thus the greatest kinetic energy.

The answer to question 4 is point A. At this point, the velocity is decreasing in magnitude and the 

tomato is getting higher in the air. Thus, the kinetic energy is decreasing and the potential energy 

is increasing.

The answer to question 5 is point C. From our study of kinematics, we know that the speed of a 

projectile is equal at the same height in the projectile’s ascent and descent. Therefore, the tomato 

has the same kinetic energy at points A and C. Additionally, since the tomato has the same height 

at these points, its potential energy is the same at points A and C. 

Keep this example in mind when you take SAT II  Physics,  because it  is likely that  a similar 

question will appear on the test.

Thermal Energy
There are many cases where the energy in a system seems simply to have disappeared. Usually, 

this is because that energy has been turned into sound and heat. For instance, a coin sliding across 

a table slows down and comes to a halt, but in doing so, it produces the sound energy of the coin 

scraping along the table and the heat energy of friction. Rub your hands together briskly and you 

will feel that friction causes heat.

We will discuss thermal energy, or heat, in greater detail in Chapter 9, but it’s worth noting here 

that it is the most common form of energy produced in energy transformations. It’s hard to think 

of an energy transformation where no heat is produced. Take these examples:

• Friction acts everywhere, and friction produces heat. 

• Electric energy produces heat: a light bulb produces far more heat than it does light. 

• When people talk about burning calories, they mean it quite literally: exercise is a way of 

converting food energy into heat. 

• Sounds fade to silence because the sound energy is gradually converted into the heat of 

the vibrating air molecules. In other words, if you shout very loudly, you make the air 

around you warmer!

Power

Power is an important physical quantity that frequently, though not always, appears on SAT II 

Physics. Mechanical systems, such as engines, are not limited by the amount of work they can do, 

but rather by the rate at which they can perform the work. Power, P, is defined as the rate at which 

work is done, or the rate at which energy is transformed. The formula for average power is:

Power is measured in units of watts (W), where 1 W = 1 J/s.

EXAMPLE
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A piano mover pushes on a piano with a force of 100 N, moving it 9 m in 12 s. With how much power 
does the piano mover push?

Power is a measure of the amount of work done in a given time period. First we need to calculate 

how much work the piano mover does, and then we divide that quantity by the amount of time the 

work takes.

Be careful not to confuse the symbol for watts, W, with the symbol for work, W.

Instantaneous Power
Sometimes we may want to know the instantaneous power of an engine or person, the amount of 

power output by that person at any given instant. In such cases, there is no value for to draw 

upon. However, when a steady force is applied to an object, the change in the amount of work 

done on the object is the product of the force and the change in that object’s displacement. Bearing 

this in mind, we can express power in terms of force and velocity:

Key Formulas
Work

Work Done 

by Gravity

Kinetic 

Energy

Work-

Energy 

Theorem

Potential 

Energy

Gravitational 

Potential 

Energy

84



Mechanical 

Energy

Average 

Power

Instantaneou

s Power

Practice Questions

1. . How much work does a person do in pushing a box with a force of 10 N over a distance of 4.0 m in 
the direction of the force?
(A) 0.4 J
(B) 4.0 J
(C) 40 J
(D) 400 J
(E) 4000 J

2. . A person pushes a 10 kg box at a constant velocity over a distance of 4 m. The coefficient of kinetic 
friction between the box and the floor is 0.3. How much work does the person do in pushing the 
box?
(A) 12 J
(B) 40 J
(C) 75 J
(D) 120 J
(E) 400 J

3. . How much work does the force of gravity do in pulling a 10 kg box down a 30Âº inclined plane of 
length 8.0 m? Note that sin 30 = cos 60 = 0.500 and cos 30 = sin 60 = 0.866.
(A) 40 J
(B) 69 J
(C) 400 J
(D) 690 J
(E) 800 J

4. . How much work does a person do in pushing a box with a force of 20 N over a distance of 8.0 m in 
the direction of the force?
(A) 1.6 J
(B) 16 J
(C) 160 J
(D) 1600 J
(E) 16000 J
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5. . The figure below is a force vs. displacement graph, showing the amount of force applied to an 
object by three different people. Al applies force to the object for the first 4 m of its displacement, 
Betty applies force from the 4 m point to the 6 m point, and Chuck applies force from the 6 m point 
to the 8 m point. Which of the three does the most work on the object?

(A) Al
(B) Betty
(C) Chuck
(D) Al and Chuck do the same amount of work
(E) Betty and Chuck do the same amount of work

6. . When a car’s speed doubles, what happens to its kinetic energy?
(A) It is quartered
(B) It is halved
(C) It is unchanged
(D) It is doubled
(E) It is quadrupled

7. . A worker does 500 J of work on a 10 kg box. If the box transfers 375 J of heat to the floor through 
the friction between the box and the floor, what is the velocity of the box after the work has been 
done on it?
(A) 5 m/s
(B) 10 m/s
(C) 12.5 m/s
(D) 50 m/s
(E) 100 m/s

8. . A person on the street wants to throw an 8 kg book up to a person leaning out of a window 5 m 
above street level. With what velocity must the person throw the book so that it reaches the person 
in the window?
(A) 5 m/s
(B) 8 m/s
(C) 10 m/s
(D) 40 m/s
(E) 50 m/s

Questions 9 and 10 refer to a forklift lifting a crate of mass 100 kg at a constant velocity 
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to a height of 8 m over a time of 4 s. The forklift then holds the crate in place for 20 s.

9. . How much power does the forklift exert in lifting the crate?
(A) 0 W
(B)

2.0 103 W
(C)

3.2 103 W
(D)

2.0 104 W
(E)

3.2 104 W

10. . How much power does the forklift exert in holding the crate in place?
(A) 0 W
(B) 400 W
(C)

1.6 103 W
(D)

4.0 103 W
(E)

1.6 104 W

Explanations

1.      C     

When the force is exerted in the direction of motion, work is simply the product of force and displacement. 

The work done is (10 N)(4.0 m) = 40 J.

2.      D     

The work done on the box is the force exerted multiplied by the box’s displacement. Since the box travels at 

a constant velocity, we know that the net force acting on the box is zero. That means that the force of the 

person’s push is equal and opposite to the force of friction. The force of friction is given by , where is 

the coefficient of kinetic friction and N is the normal force. The normal force is equal to the weight of the box, 

which is mg = (10 kg )(10 m/s2) = 100 N. With all this in mind, we can solve for the work done on the box:

3.      C     

The work done by the force of gravity is the dot product of the displacement of the box and the force of 

gravity acting on the box. That means that we need to calculate the component of the force of gravity that is 

parallel to the incline. This is mg sin 30 = (10 kg)(10 m/s2) sin 30. Thus, the work done is
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4.      C     

This is the same question as question 1. We were hoping that with different numbers and line spacing you 

wouldn’t notice. The test writers do that too sometimes.

5.      C     

On a force vs. displacement graph, the amount of work done is the area between the graph and the x-axis. 

The work Al does is the area of the right triangle:

The amount of work Betty does is equal to the area of a triangle of length 2 and height 4:

The amount of work done by Chuck is equal to the area of a rectangle of length 2 and height 4: 

J. We can conclude that Chuck did the most work.

Don’t be fooled by D: the force exerted by Al is in the opposite direction of the object’s displacement, so he 

does negative work on the object.

6.      E     

The formula for kinetic energy is KE = mv2. Since the car’s kinetic energy is directly proportional to the 

square of its velocity, doubling the velocity would mean quadrupling its kinetic energy.

7.      A     

The work-energy theorem tells us that the amount of work done on an object is equal to the amount of 

kinetic energy it gains, and the amount of work done by an object is equal to the amount of kinetic energy it 

loses. The box gains 500 J of kinetic energy from the worker’s push, and loses 375 J of kinetic energy to 

friction, for a net gain of 125 J. Kinetic energy is related to velocity by the formula KE = mv2, so we can 

get the answer by plugging numbers into this formula and solving for v:
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8.      C     

When the book reaches the person in the window, it will have a gravitational potential energy of U = mgh. In 

order for the book to reach the window, then, it must leave the hands of the person at street level with at 

least that much kinetic energy. Kinetic energy is given by the formula KE = 1/2 mv2, so we can solve for v by 

making KE = U:

9.      B     

Power is a measure of work divided by time. In turn, work is a measure of force multiplied by displacement. 

Since the crate is lifted with a constant velocity, we know that the net force acting on it is zero, and so the 

force exerted by the forklift must be equal and opposite to the weight of the crate, which is (100 kg)(10 

m/s2) = 103 N. From this, we can calculate the power exerted by the forklift:

10.      A     

Power is measured as work divided by time, and work is the dot product of force and displacement. While the 

crate is being held in the air, it is not displaced, so the displacement is zero. That means the forklift does no 

work, and thus exerts no power.
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Special Problems in Mechanics

THE  “SPECIAL  PROBLEMS”  WE  WILL address  in  this  chapter  deal  with  four  common 

mechanical systems: pulleys, inclined planes, springs, and pendulums. These systems pop up on 

many  mechanics  problems  on  SAT II  Physics,  and  it  will  save  you  time  and  points  if  you 

familiarize yourself with their quirks. These systems obey the same mechanical rules as the rest of 

the world, and we will only introduce one principle (Hooke’s Law) that hasn’t been covered in the 

previous three chapters.  However, there  are  a  number  of  problem-solving techniques that  are 

particular to these sorts of problems, and mastering them will help you get through these problems 

quickly and easily. 

The Three-Step Approach to Problem Solving

The systems we will look at in this chapter won’t test your knowledge of obscure formulas so 

much as your problem-solving abilities. The actual physics at work on these systems is generally 

quite simple—it rarely extends beyond Newton’s three laws and a basic understanding of work 

and energy—but you’ll need to apply this simple physics in imaginative ways.

There are three general steps you can take when approaching any problem in mechanics. Often the 

problems are simple enough that these steps are unnecessary. However, with the special problems 

we will tackle in this chapter, following these steps carefully may save you many times over on 

SAT II Physics. The three steps are:

1. Ask yourself how the system will move: Before you start writing down equations and 

looking at answer choices, you should develop an intuitive sense of what you’re looking 

at. In what direction will the objects in the system move? Will they move at all? Once you 

know what you’re dealing with, you’ll have an easier time figuring out how to approach 

the problem. 

2. Choose a coordinate system: Most systems will only move in one dimension: up and 

down, left and right, or on an angle in the case of inclined planes. Choose a coordinate 

system where one direction is negative, the other direction is positive, and, if necessary, 

choose an origin point  that  you label 0.  Remember:  no coordinate  system is  right  or 

wrong in itself, some are just more convenient than others. The important thing is to be 

strictly consistent once you’ve chosen a coordinate system, and to be mindful of those 

subtle but crucial minus signs! 

3. Draw free-body diagrams: Most students find mechanics easier than electromagnetism 

for the simple reason that mechanics problems are easy to visualize. Free-body diagrams 

allow you to make the most of this advantage. Make sure you’ve accounted for all the 

forces acting on all the bodies in the system. Make ample use of Newton’s Third Law, and 

remember that for systems at rest or at a constant velocity, the net force acting on every 

body in the system must be zero.

Students  too  often  think  that  physics  problem  solving  is  just  a  matter  of  plugging  the  right 

numbers  into  the  right  equations.  The  truth  is,  physics  problem solving  is  more  a  matter  of 
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determining what those right numbers and right equations are. These three steps should help you 

do just that. Let’s look at some mechanical systems.

Pulleys

Pulleys are simple machines that consist of a rope that slides around a disk, called a block. Their 

main function is to change the direction of the tension force in a rope. The pulley systems that 

appear on SAT II Physics almost always consist of idealized, massless and frictionless pulleys, and 

idealized ropes that are massless and that don’t stretch. These somewhat unrealistic parameters 

mean that:

1. The rope slides without any resistance over the pulley, so that the pulley changes the 

direction of the tension force without changing its magnitude. 

2. You can apply the law of conservation of energy to the system without worrying about the 

energy of the rope and pulley. 

3. You don’t have to factor in the mass of the pulley or rope when calculating the effect of a 

force exerted on an object attached to a pulley system.

The one exception to this rule is the occasional problem you might find regarding the torque 

applied to a pulley block. In such a problem, you will have to take the pulley’s mass into account. 

We’ll deal with this special case in Chapter 7, when we look at torque.

The Purpose of Pulleys
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We use pulleys to lift objects because they reduce the amount of force we need to exert. For 

example, say that you are applying force F to the mass in the figure above. How does F compare 

to the force you would have to exert in the absence of a pulley? 

To lift mass m at a constant velocity without a pulley, you would have to apply a force equal to the 

mass’s weight, or a force of mg upward. Using a pulley, the mass must still be lifted with a force 

of mg upward, but this force is distributed between the tension of the rope attached to the ceiling, 

T, and the tension of the rope gripped in your hand, F.

Because there are two ropes pulling the block, and hence the mass, upward, there are two equal 

upward forces, F and T. We know that the sum of these forces is equal to the gravitational force 

pulling the mass down, so F + T = 2F = mg or F = mg/2. Therefore, you need to pull with only 

one half the force you would have to use to lift mass m if there were no pulley. 

Standard Pulley Problem

The figure above represents a pulley system where masses m and M are connected by a rope over 

a massless and frictionless pulley. Note that M > m and both masses are at the same height above 
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the ground. The system is initially held at rest, and is then released. We will learn to calculate the 

acceleration of the masses, the velocity of mass m when it moves a distance h, and the work done 

by the tension force on mass m as it moves a distance h.

Before we start calculating values for acceleration, velocity, and work, let’s go through the three 

steps for problem solving:

1. Ask yourself  how the system will  move: From experience,  we know that  the heavy 

mass,  M,  will fall, lifting the smaller mass,  m.  Because the masses are connected, we 

know that the velocity of mass  m is equal in magnitude to the velocity of mass  M, but 

opposite in direction. Likewise, the acceleration of mass m is equal in magnitude to the 

acceleration of mass M, but opposite in direction. 

2. Choose  a  coordinate  system: Some  diagrams  on  SAT  II  Physics  will  provide  a 

coordinate system for you. If they don’t, choose one that will simplify your calculations. 

In  this  case,  let’s  follow the  standard  convention  of  saying  that  up  is  the  positive  y 

direction and down is the negative y direction. 

3. Draw  free-body  diagrams: We know  that  this  pulley  system  will  accelerate  when 

released, so we shouldn’t expect the net forces acting on the bodies in the system to be 

zero. Your free-body diagram should end up looking something like the figure below.

Note that the tension force, T, on each of the blocks is of the same magnitude. In any 

nonstretching rope (the only kind of rope you’ll encounter on SAT II Physics), the tension, as well 

as the velocity and acceleration, is the same at every point. Now, after preparing ourselves to 

understand the problem, we can begin answering some questions.

1. . What is the acceleration of mass M?
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2. . What is the velocity of mass m after it travels a distance h?

3. . What is the work done by the force of tension in lifting mass m a distance h?

1. WHAT IS THE ACCELERATION OF MASS M?

Because the acceleration of the rope is of the same magnitude at every point in the rope, the 

acceleration of the two masses will also be of equal magnitude. If we label the acceleration of 

mass m as a, then the acceleration of mass M is –a. Using Newton’s Second Law we find:

By subtracting the first equation from the second, we find (M – m)g = (M + m)a or a = (M – 

m)g/(M + m). Because M – m > 0, a is positive and mass m accelerates upward as anticipated. This 

result gives us a general formula for the acceleration of any pulley system with unequal masses, M 

and m. Remember, the acceleration is positive for m and negative for M, since m is moving up and 

M is going down.

2. WHAT IS THE VELOCITY OF MASS M AFTER IT TRAVELS A 

DISTANCE H?

We could solve this problem by plugging numbers into the kinematics equations, but as you can 

see, the formula for the acceleration of the pulleys is a bit unwieldy, so the kinematics equations 

may not be the best approach. Instead, we can tackle this problem in terms of energy. Because the 

masses in the pulley system are moving up and down, their movement corresponds with a change 

in gravitational potential energy. Because mechanical energy, E, is conserved, we know that any 

change in the potential energy,  U, of the system will be accompanied by an equal but opposite 

change in the kinetic energy, KE, of the system.

Remember that since the system begins at rest, . As the masses move, mass M loses 

Mgh joules of potential energy, whereas mass m gains mgh joules of potential energy. Applying 

the law of conservation of mechanical energy, we find: 

Mass m is moving in the positive y direction.

We admit it: the above formula is pretty scary to look at. But since SAT II Physics doesn’t allow 
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calculators, you almost certainly will not have to calculate precise numbers for a mass’s velocity. 

It’s less  important that  you have this  exact  formula memorized, and more important that you 

understand  the  principle  by  which  it  was  derived.  You may  find  a  question  that  involves  a 

derivation of this or some related formula, so it’s good to have at least a rough understanding of 

the relationship between mass, displacement, and velocity in a pulley system.

3.  WHAT  IS  THE WORK DONE  BY  THE  FORCE  OF  TENSION IN 

LIFTING MASS M A DISTANCE H?

Since the tension force, T, is in the same direction as the displacement, h, we know that the work 

done is equal to  hT. But what is the magnitude of the tension force? We know that the sum of 

forces acting on m is T – mg which is equal to ma. Therefore, T = m(g – a). From the solution to 

question 1, we know that a = g(M – m)/(M + m), so substituting in for a, we get:

A Pulley on a Table
Now imagine that masses m and M are in the following arrangement:

Let’s assume that mass M has already begun to slide along the table, and its movement is opposed 

by the force of kinetic friction, , where is the coefficient of kinetic friction, and N is 

the normal force acting between the mass and the table. If the mention of friction and normal 

forces frightens you, you might want to flip back to Chapter 3 and do a little reviewing.

So let’s approach this problem with our handy three-step problem-solving method:

1. Ask yourself  how the system will move: First,  we know that mass  m is  falling and 

dragging mass M off the table. The force of kinetic friction opposes the motion of mass 

M. We also know, since both masses are connected by a nonstretching rope, that the two 

masses must have the same velocity and the same acceleration. 

2. Choose a coordinate system: For the purposes of this problem, it will be easier if we set 

our coordinate system relative to the rope rather than to the table. If we say that the x-axis 

runs parallel to the rope, this means the x-axis will be the up-down axis for mass m and 

the left-right axis for mass  M. Further, we can say that gravity pulls in the negative  x 

direction. The  y-axis, then, is perpendicular to the rope, and the positive  y direction is 

away from the table. 

3. Draw free-body diagrams: The above description of the coordinate system may be a bit 
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confusing. That’s why a diagram can often be a lifesaver.

Given this information, can you calculate the acceleration of the masses? If you think analytically 

and don’t panic, you can. Since they are attached by a rope, we know that both masses have the 

same velocity, and hence the same acceleration, a. We also know the net force acting on both 

masses: the net force acting on mass M is , and the net force acting on mass m is T – mg. 

We can then apply Newton’s Second Law to both of the masses, giving us two equations involving 

a:

Adding the two equations, we find . Solving for a, we get:

Since m is moving downward, a must be negative. Therefore, .

How Complex Formulas Will Be Tested on SAT II Physics
It is highly unlikely that SAT II Physics will ask a question that involves remembering and then 

plugging  numbers  into  an  equation  like  this  one.  Remember:  SAT II  Physics  places  far  less 

emphasis on math than your high school physics class. The test writers don’t want to test your 

ability to recall a formula or do some simple math. Rather, they want to determine whether you 

understand the formulas you’ve memorized. Here are some examples of the kinds of questions 

you might be asked regarding the pulley system in the free-body diagram above:

1. Which  of  the  following  five  formulas  represents  the  acceleration  of  the  pulley 

system? You would then be given five different mathematical formulas, one of which is 

the correct formula. The test writers would not expect you to have memorized the correct 

formula, but they would expect you to be able to derive it. 

2. Which of the following is a way of maximizing the system’s acceleration? You would 

then be given options like “maximize M and m and minimize ,” or “maximize and m 
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and  minimize  M.”  With  such  a  question,  you  don’t  even  need  to  know  the  correct 

formula, but you do need to understand how the pulley system works. The downward 

motion is due to the gravitational force on m and is opposed by the force of friction on M, 

so we would maximize the downward acceleration by maximizing m and minimizing M 

and 

3. If the system does not move, which of the following must be true? You would then be 

given a number of formulas relating M, m, and . The idea behind such a question is that 

the system does not move if the downward force on m is less than or equal to the force of 

friction on M, so .

These examples are perhaps less demanding than a question that expects you to derive or recall a 

complex formula and then plug numbers into it, but they are still difficult questions. In fact, they 

are about as difficult as mechanics questions on SAT II Physics will get.

Inclined Planes

What we call wedges or slides in everyday language are called inclined planes in physics-speak. 

From our experience on slides during recess in elementary school, sledding down hills in the 

winter, and skiing, we know that when people are placed on slippery inclines, they slide down the 

slope. We also know that slides can sometimes be sticky, so that when you are at the top of the 

incline, you need to give yourself a push to overcome the force of static friction. As you descend a 

sticky slide, the force of kinetic friction opposes your motion. In this section, we will consider 

problems involving inclined planes both with and without friction. Since they’re simpler, we’ll 

begin with frictionless planes.

Frictionless Inclined Planes
Suppose you place a 10 kg box on a frictionless 30º inclined plane and release your hold, allowing 

the box to slide to the ground, a horizontal distance of d meters and a vertical distance of h meters. 

Before we continue, let’s follow those three important preliminary steps for solving problems in 

mechanics:

1. Ask yourself how the system will move: Because this is a frictionless plane, there is 

nothing to stop the box from sliding down to the bottom. Experience suggests that the 

steeper the incline, the faster an object will slide, so we can expect the acceleration and 

velocity of the box to be affected by the angle of the plane. 

2. Choose a coordinate system: Because we’re interested in how the box slides along the 

inclined plane, we would do better to orient our coordinate system to the slope of the 

plane. The x-axis runs parallel to the plane, where downhill is the positive x direction, and 
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the y-axis runs perpendicular to the plane, where up is the positive y direction. 

3. Draw free-body diagrams: The two forces acting on the box are the force of gravity, 

acting straight  downward,  and  the  normal  force,  acting  perpendicular  to  the  inclined 

plane, along the y-axis. Because we’ve oriented our coordinate system to the slope of the 

plane, we’ll have to resolve the vector for the gravitational force,  mg, into its  x- and y-

components.  If  you recall  what  we learned about  vector decomposition in  Chapter  1, 

you’ll know you can break mg down into a vector of magnitude cos 30º in the negative y 

direction and a vector of magnitude sin 30º in the positive x direction. The result is a free-

body diagram that looks something like this:

Decomposing the mg vector gives a total of three force vectors at work in this diagram: the y-

component of the gravitational force and the normal force, which cancel out; and the x-component 

of the gravitational force, which pulls the box down the slope. Note that the steeper the slope, the 

greater the force pulling the box down the slope.

Now let’s solve some problems. For the purposes of these problems, take the acceleration due to 

gravity  to  be  g =  10 m/s2.  Like SAT II  Physics,  we will  give you the values of  the relevant 

trigonometric functions: cos 30 = sin 60 = 0.866, cos 60 = sin 30 = 0.500.

1. . What is the magnitude of the normal force?

2. . What is the acceleration of the box?

3. . What is the velocity of the box when it reaches the bottom of the slope?

4. . What is the work done on the box by the force of gravity in bringing it to the bottom of the plane?

1. WHAT IS THE MAGNITUDE OF THE NORMAL FORCE?

The box is not moving in the y direction, so the normal force must be equal to the y-component of 

the  gravitational  force.  Calculating  the  normal  force  is  then  just  a  matter  of  plugging a  few 

numbers in for variables in order to find the y-component of the gravitational force:
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2. WHAT IS THE ACCELERATION OF THE BOX?

We know that the force pulling the box in the positive x direction has a magnitude of mg sin 30. 

Using Newton’s Second Law, F = ma, we just need to solve for a:

3. WHAT IS THE VELOCITY OF THE BOX WHEN IT REACHES THE 

BOTTOM OF THE SLOPE?

Because we’re dealing with a frictionless plane, the system is closed and we can invoke the law of 

conservation of mechanical energy. At the top of the inclined plane, the box will not be moving 

and so it will have an initial kinetic energy of zero ( ). Because it is a height h above 

the bottom of the plane, it will have a gravitational potential energy of U = mgh. Adding kinetic 

and potential energy, we find that the mechanical energy of the system is:

At the bottom of the slope, all the box’s potential energy will have been converted into kinetic 

energy. In other words, the kinetic energy, 1⁄2 mv2, of the box at the bottom of the slope is equal to 

the potential energy, mgh, of the box at the top of the slope. Solving for v, we get:

4. WHAT IS THE WORK DONE ON THE BOX BY THE FORCE OF 

GRAVITY IN BRINGING IT TO THE BOTTOM OF THE INCLINED 

PLANE?

The fastest way to solve this problem is to appeal to the work-energy theorem, which tells us that 

the work done on an object is equal to its change in kinetic energy. At the top of the slope the box 

has no kinetic energy, and at the bottom of the slope its kinetic energy is equal to its potential 

energy at the top of the slope, mgh. So the work done on the box is: 

Note that the work done is independent of how steep the inclined plane is, and is only dependent 

on the object’s change in height when it slides down the plane.

Frictionless Inclined Planes with Pulleys
Let’s bring together what we’ve learned about frictionless inclined planes and pulleys on tables 

into one exciting über-problem:
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Assume for this problem that —that is, mass M will pull mass m up the slope. Now 

let’s ask those three all-important preliminary questions:

1. Ask yourself how the system will move: Because the two masses are connected by a 

rope, we know that they will have the same velocity and acceleration. We also know that 

the tension in the rope is constant throughout its length. Because , we know 

that when the system is released from rest, mass M will move downward and mass m will 

slide up the inclined plane. 

2. Choose a coordinate system: Do the same thing here that we did with the previous 

pulley-on-a-table  problem.  Make  the  x-axis  parallel  to  the  rope,  with  the  positive  x 

direction being up for mass  M and downhill  for mass  m,  and the negative  x direction 

being down for mass M and uphill for mass m. Make the y-axis perpendicular to the rope, 

with the positive y-axis being away from the inclined plane, and the negative y-axis being 

toward the inclined plane. 

3. Draw free-body diagrams: We’ve seen how to draw free-body diagrams for masses 

suspended from pulleys, and we’ve seen how to draw free-body diagrams for masses on 

inclined planes. All we need to do now is synthesize what we already know:

Now let’s tackle a couple of questions:

1. . What is the acceleration of the masses?

2. . What is the velocity of mass m after mass M has fallen a distance h?

1. WHAT IS THE ACCELERATION OF THE MASSES?

First, let’s determine the net force acting on each of the masses. Applying Newton’s Second Law 

we get: 
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Adding these two equations together, we find that . Solving for a, we 

get:

Because , the acceleration is negative, which, as we defined it, is down for mass M 

and uphill for mass m.

2.  WHAT  IS  THE  VELOCITY  OF  MASS  M AFTER  MASS  M HAS 

FALLEN A DISTANCE H?

Once again, the in-clined plane is frictionless, so we are dealing with a closed system and we can 

apply  the  law  of  conservation  of  mechanical  energy.  Since  the  masses  are  initially  at  rest, 

. Since mass M falls a distance h, its potential energy changes by –-Mgh. If mass M 

falls a distance h, then mass m must slide the same distance up the slope of the inclined plane, or a 

vertical distance of . Therefore, mass m’s potential energy increases by . Because 

the sum of potential energy and kinetic energy cannot change, we know that the kinetic energy of 

the two masses increases precisely to the extent that their potential energy decreases. We have all 

we need to scribble out some equations and solve for v:

Finally, note that the velocity of mass m is in the uphill direction.

As with the complex equations we encountered with pulley systems above, you needn’t trouble 

yourself with memorizing a formula like this. If  you understand the principles at work in this 

problem and would feel somewhat comfortable deriving this formula, you know more than SAT II 

Physics will likely ask of you.

Inclined Planes With Friction
There are two significant differences between frictionless inclined plane problems and inclined 

plane problems where friction is a factor:

1. There’s an extra force to deal with. The force of  friction will  oppose the  downhill 

component of the gravitational force. 

2. We can no longer rely on the law of conservation of mechanical energy. Because 

energy is being lost through the friction between the mass and the inclined plane, we are 

no longer dealing with a closed system. Mechanical energy is not conserved.

Consider the 10 kg box we encountered in our example of a frictionless inclined plane. This time, 

though, the inclined plane has a coefficient of kinetic friction of . How will this additional 
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factor affect us? Let’s follow three familiar steps:

1. Ask yourself how the system will  move:  If the force of gravity is strong enough to 

overcome the force of friction, the box will accelerate down the plane. However, because 

there is a force acting against the box’s descent, we should expect it to slide with a lesser 

velocity than it did in the example of the frictionless plane. 

2. Choose a coordinate system: There’s no reason not to hold onto the co-ordinate system 

we used before: the positive x direction is down the slope, and the positive y direction is 

upward, perpendicular to the slope. 

3. Draw free-body diagrams: The free-body diagram will be identical to the one we drew 

in the example of the frictionless plane, except we will have a vector for the force of 

friction in the negative x direction.

Now let’s ask some questions about the motion of the box.

1. . What is the force of kinetic friction acting on the box?

2. . What is the acceleration of the box?

3. . What is the work done on the box by the force of kinetic friction?

WHAT  IS  THE  FORCE  OF  KINETIC  FRICTION  ACTING  ON  THE 

BOX?

The normal force acting on the box is  86.6  N, exactly the same as for the frictionless inclined 

plane. The force of kinetic friction is defined as , so plugging in the appropriate values 

for and N:

Remember, though, that the force of friction is exerted in the negative x direction, so the correct 

answer is –43.3 N.

WHAT IS THE ACCELERATION OF THE BOX?

The net force acting on the box is the difference between the downhill gravitational force and the 
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force of friction:  .  Using Newton’s Second Law, we can determine the net 

force acting on the box, and then solve for a:

Because , the direction of the acceleration is in the downhill direction. 

WHAT  IS  THE  WORK  DONE  ON  THE  BOX  BY  THE  FORCE  OF 

KINETIC FRICTION?

Since W = F · d, the work done by the force of friction is the product of the force of friction and 

the displacement of the box in the direction that the force is exerted. Because the force of friction 

is  exerted  in  the  negative  x direction,  we need  to  find the  displacement  of  the  box  in  the  x 

direction. We know that it has traveled a horizontal distance of d and a vertical distance of h. The 

Pythagorean Theorem then tells us that the displacement of the box is . Recalling that the 

force of friction is –43.3 N, we know that the work done by the force of friction is 

Note that the amount of work done is negative, because the force of friction acts in the opposite 

direction of the displacement of the box.

Springs

Questions about  springs on SAT II  Physics are usually simple matters  of a mass on a spring 

oscillating back and forth. However, spring motion is the most interesting of the four topics we 

will  cover  here  because  of  its  generality.  The  harmonic  motion that  springs  exhibit  applies 

equally to objects moving in a circular path and to the various wave phenomena that we’ll study 

later in this book. So before we dig in to the nitty-gritty of your typical SAT II Physics spring 

questions, let’s look at some general features of harmonic motion.

Oscillation and Harmonic Motion
Consider the following physical phenomena:

• When you drop a rock into a still pond, the rock makes a big splash, which causes ripples 

to spread out to the edges of the pond. 

• When you pluck a guitar string, the string vibrates back and forth. 

• When you rock a small boat, it wobbles to and fro in the water before coming to rest 

again. 

• When you stretch out a spring and release it,  the spring goes back and forth between 

being compressed and being stretched out.
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There are just a few examples of the widespread phenomenon of  oscillation. Oscillation is the 

natural world’s way of returning a system to its  equilibrium position, the stable position of the 

system where the net  force acting on it  is zero.  If you throw a system off-balance, it  doesn’t 

simply return to the way it was; it oscillates back and forth about the equilibrium position.

A system oscillates as a way of giving off energy. A system that is thrown off-kilter has more 

energy  than  a  system in  its  equilibrium position.  To take  the  simple  example  of  a  spring,  a 

stretched-out spring will start to move as soon as you let go of it: that motion is evidence of 

kinetic energy that the spring lacks in its equilibrium position. Because of the law of conservation 

of energy, a stretched-out spring cannot simply return to its equilibrium position; it must release 

some energy in  order  to  do so.  Usually, this  energy is  released  as  thermal energy caused by 

friction,  but  there  are  plenty  of  interesting  exceptions.  For  instance,  a  plucked  guitar  string 

releases sound energy: the music we hear is the result of the string returning to its equilibrium 

position.

The movement of an oscillating body is called harmonic motion. If you were to graph the position, 

velocity, or acceleration of an oscillating body against time, the result would be a sinusoidal wave; 

that is, some variation of a y = a sin bx or a y = a cos bx graph. This generalized form of harmonic 

motion applies  not  only to  springs  and guitar  strings,  but  to  anything that  moves in  a  cycle. 

Imagine placing a pebble on the edge of a turntable,  and watching the turntable  rotate  while 

looking at it from the side. You will see the pebble moving back and forth in one dimension. The 

pebble will appear to oscillate just like a spring: it will appear to move fastest at the middle of its 

trajectory and slow to a halt and reverse direction as it reaches the edge of its trajectory.

This example serves two purposes. First, it shows you that the oscillation of springs is just one of a 

wide range of phenomena exhibiting harmonic motion. Anything that moves in a cyclic pattern 

exhibits harmonic motion. This includes the light and sound waves without which we would have 

a lot of trouble moving about in the world. Second, we bring it up because SAT II Physics has 

been known to test students on the nature of the horizontal or vertical component of the motion of 

an object in circular motion. As you can see, circular motion viewed in one dimension is harmonic 

motion.

Though harmonic motion is one of the most widespread and important of physical phenomena, 

your understanding of it will not be taxed to any great extent on SAT II Physics. In fact, beyond 

the motion of springs and pendulums, everything you will need to know will be covered in this 

book in the chapter on Waves. The above discussion is mostly meant to fit your understanding of 

the oscillation of springs into a wider context.

The Oscillation of a Spring
Now let’s focus on the harmonic motion exhibited by a spring. To start with, we’ll imagine a mass, 
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m, placed on a frictionless surface, and attached to a wall by a spring. In its equilibrium position, 

where  no forces  act  upon it,  the  mass  is  at  rest.  Let’s  label  this  equilibrium position  x =  0. 

Intuitively, you know that if you compress or stretch out the spring it will begin to oscillate. 

Suppose you push the mass toward the wall, compressing the spring, until the mass is in position 

. 

When you release the mass, the spring will exert a force, pushing the mass back until it reaches 

position , which is called the amplitude of the spring’s motion, or the maximum 

displacement of the oscillator. Note that . 

By that point, the spring will be stretched out, and will be exerting a force to pull the mass back in 

toward the wall. Because we are dealing with an idealized frictionless surface, the mass will not be 

slowed by the force of friction, and will oscillate back and forth repeatedly between and 

.

Hooke’s Law
This is all well and good, but we can’t get very far in sorting out the amplitude, the velocity, the 

energy, or anything else about the mass’s motion if we don’t understand the manner in which the 

spring exerts a force on the mass attached to it. The force, F, that the spring exerts on the mass is 

defined by Hooke’s Law:

where x is the spring’s displacement from its equilibrium position and k is a constant of 

proportionality called the spring constant. The spring constant is a measure of “springiness”: a 

greater value for k signifies a “tighter” spring, one that is more resistant to being stretched.

Hooke’s Law tells us that the further the spring is displaced from its equilibrium position (x) the 

greater the force the spring will exert in the direction of its equilibrium position (F). We call F a 

restoring  force:  it  is  always  directed  toward  equilibrium.  Because  F and  x are  directly 
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proportional, a graph of F vs. x is a line with slope –k.

Simple Harmonic Oscillation

A mass oscillating on a spring is one example of a  simple harmonic oscillator. Specifically, a 

simple  harmonic  oscillator  is  any  object  that  moves  about  a  stable  equilibrium  point  and 

experiences a restoring force proportional to the oscillator’s displacement.

For an oscillating spring, the restoring force, and consequently the acceleration, are greatest and 

positive at . These quantities decrease as x approaches the equilibrium position and are zero at 

x = 0. The restoring force and acceleration—which are now negative—increase in magnitude as x 

approaches and are maximally negative at .

Important Properties of a Mass on a Spring
There are a number of important properties related to the motion of a mass on a spring, all of 

which are fair game for SAT II Physics. Remember, though: the test makers have no interest in 

testing your ability to recall complex formulas and perform difficult mathematical operations. You 

may be called upon to know the simpler of these formulas,  but not the complex ones. As we 

mentioned at the end of the section on pulleys, it’s less important that you memorize the formulas 

and more important that you understand what they mean. If you understand the principle, there 

probably won’t be any questions that will stump you.

Period of Oscillation

The period of oscillation, T, of a spring is the amount of time it takes for a spring to complete a 

round-trip  or  cycle.  Mathematically,  the  period  of  oscillation  of  a  simple  harmonic  oscillator 

described by Hooke’s Law is:

This equation tells us that as the mass of the block, m, increases and the spring constant, k, 

decreases, the period increases. In other words, a heavy mass attached to an easily stretched spring 

will oscillate back and forth very slowly, while a light mass attached to a resistant spring will 

oscillate back and forth very quickly.

Frequency

The frequency of the spring’s motion tells us how quickly the object is oscillating, or how many 

cycles it completes in a given timeframe. Frequency is inversely proportional to period:
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Frequency is given in units of cycles per second, or hertz (Hz).

Potential Energy

The potential energy of a spring ( ) is sometimes called elastic energy, because it results from 

the spring being stretched or compressed. Mathematically, is defined by:

The potential energy of a spring is greatest when the coil is maximally compressed or stretched, 

and is zero at the equilibrium position.

Kinetic Energy

SAT II Physics will not test you on the motion of springs involving friction, so for the purposes of 

the test,  the mechanical  energy of a  spring is  a conserved quantity. As we recall,  mechanical 

energy is the sum of the kinetic energy and potential energy.

At the points of maximum compression and extension, the velocity, and hence the kinetic energy, 

is zero and the mechanical energy is equal to the potential energy, Us= 1/2 . 

At the equilibrium position, the potential energy is zero, and the velocity and kinetic energy are 

maximized. The kinetic energy at the equilibrium position is equal to the mechanical energy:

From this equation, we can derive the maximum velocity:

You won’t need to know this equation, but it might be valuable to note that the velocity increases 

with a large displacement, a resistant spring, and a small mass.

Summary

It is highly unlikely that the formulas discussed above will appear on SAT II Physics. More likely, 

you will be asked conceptual questions such as: at what point in a spring’s oscillation is the kinetic 

or  potential  energy maximized or  minimized,  for  instance.  The figure  below summarizes and 

clarifies some qualitative aspects of simple harmonic oscillation. Your qualitative understanding of 

the relationship between force, velocity, and kinetic and potential energy in a spring system is far 

more likely to be tested than your knowledge of the formulas discussed above.
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In this figure, v represents velocity, F represents force, KE represents kinetic energy, and 

represents potential energy. 

Vertical Oscillation of Springs
Now let’s consider a mass attached to a spring that is suspended from the ceiling. Questions of this 

sort  have a  nasty habit  of coming up on SAT II  Physics.  The oscillation of the spring when 

compressed or extended won’t be any different, but we now have to take gravity into account. 

Equilibrium Position

Because  the  mass  will  exert  a  gravitational  force  to  stretch  the  spring  downward  a  bit,  the 

equilibrium position will no longer be at x = 0, but at x = –h, where h is the vertical displacement 
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of the spring due to the gravitational pull exerted on the mass. The equilibrium position is the 

point where the net force acting on the mass is zero; in other words, the point where the upward 

restoring force of the spring is equal to the downward gravitational force of the mass. 

Combining the restoring force, F = –kh, and the gravitational force, F = mg, we can solve for h:

Since m is in the numerator and k in the denominator of the fraction, the mass displaces itself more 

if it has a large weight and is suspended from a lax spring, as intuition suggests.

A Vertical Spring in Motion

If the spring is then stretched a distance d, where d < h, it will oscillate between 

and .

Throughout the motion of the mass, the force of gravity is constant and downward. The restoring 

force of the spring is always upward, because even at the mass is below the spring’s initial 

equilibrium position of x = 0. Note that if d were greater than h, would be above x = 0, and 

the restoring force would act in the downward direction until the mass descended once more 

below x = 0.

According  to  Hooke’s  Law,  the  restoring  force  decreases  in  magnitude  as  the  spring  is 
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compressed.  Consequently,  the  net  force  downward  is  greatest  at  and the  net  force 

upward is greatest at .

Energy

The mechanical energy of the vertically oscillating spring is:

where is gravitational potential energy and is the spring’s (elastic) potential energy.

Note that  the  velocity of  the block is  zero at  and  ,  and maximized at  the 

equilibrium position, x = –h. Consequently, the kinetic energy of the spring is zero for 

and and is greatest at x = –h. The gravitational potential energy of the system increases 

with the height of the mass. The elastic potential energy of the spring is greatest when the spring is 

maximally extended at and decreases with the extension of the spring.

How This Knowledge Will Be Tested
Most of the questions on SAT II Physics that deal with spring motion will ask qualitatively about 

the energy or velocity of a vertically oscillating spring. For instance, you may be shown a diagram 

capturing one moment in a spring’s trajectory and asked about the relative magnitudes of the 

gravitational and elastic potential energies and kinetic energy. Or you may be asked at what point 

in a spring’s trajectory the velocity is maximized. The answer, of course, is that it is maximized at 

the equilibrium position. It is far less likely that you will be asked a question that involves any sort 

of calculation.

Pendulums

A pendulum is defined as a mass, or bob, connected to a rod or rope, that experiences simple 

harmonic motion as it swings back and forth without friction.  The equilibrium position of the 

pendulum is the position when the mass is hanging directly downward. 

Consider a pendulum bob connected to a massless rope or rod that is held at an angle from 

the horizontal.  If you release the mass, then the system will swing to position  and back 

again. 
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The oscillation of a pendulum is much like that of a mass on a spring. However, there are 

significant differences, and many a student has been tripped up by trying to apply the principles of 

a spring’s motion to pendulum motion.

Properties of Pendulum Motion
As with springs, there are a number of properties of pendulum motion that you might be tested on, 

from frequency and period to kinetic and potential energy. Let’s apply our three-step method of 

approaching special  problems in  mechanics  and then  look  at  the  formulas  for  some of  those 

properties:

1. Ask yourself how the system will move: It doesn’t take a rocket scientist to surmise that 

when you release the pendulum bob it will accelerate toward the equilibrium position. As 

it passes through the equilibrium position, it will slow down until it reaches position , 

and then accelerate back. At any given moment, the velocity of the pendulum bob will be 

perpendicular to the rope. The pendulum’s trajectory describes an arc of a circle, where 

the rope is a radius of the circle and the bob’s velocity is a line tangent to the circle. 

2. Choose a coordinate system: We want to calculate the forces acting on the pendulum at 

any given point in its trajectory. It will be most convenient to choose a  y-axis that runs 

parallel to the rope. The x-axis then runs parallel to the instantaneous velocity of the bob 

so that, at any given moment, the bob is moving along the x-axis. 

3. Draw free-body diagrams: Two forces act on the bob: the force of gravity,  F =  mg, 

pulling  the  bob straight  downward  and  the  tension of  the  rope,  ,  pulling  the  bob 

upward  along  the  y-axis.  The  gravitational  force  can  be  broken  down  into  an  x-

component,  mg sin , and a  y-component,  mg cos . The  y component balances out the 

force of tension—the pendulum bob doesn’t accelerate along the y-axis—so the tension in 

the  rope  must  also  be  mg cos .  Therefore,  the  tension  force  is  maximum  for  the 

equilibrium position and decreases with  . The restoring force is  mg sin  , so, as we 

might expect, the restoring force is greatest at the endpoints of the oscillation, 

and is zero when the pendulum passes through its equilibrium position.
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You’ll notice that the restoring force for the pendulum, mg sin , is not directly proportional to the 

displacement of the pendulum bob, , which makes calculating the various properties of the 

pendulum very difficult. Fortunately, pendulums usually only oscillate at small angles, where sin 

. In such cases, we can derive more straightforward formulas, which are admittedly only 

approximations. However, they’re good enough for the purposes of SAT II Physics.

Period

The period of oscillation of the pendulum, T, is defined in terms of the acceleration due to gravity, 

g, and the length of the pendulum, L:

This is a pretty scary-looking equation, but there’s really only one thing you need to gather from 

it: the longer the pendulum rope, the longer it will take for the pendulum to oscillate back and 

forth. You should also note that the mass of the pendulum bob and the angle of displacement play 

no role in determining the period of oscillation.

Energy

The mechanical  energy of  the pendulum is a  conserved quantity. The potential  energy of the 

pendulum, mgh, increases with the height of the bob; therefore the potential energy is minimized 

at  the  equilibrium point  and is  maximized at  .  Conversely,  the  kinetic  energy and 

velocity of the pendulum are maximized at the equilibrium point and minimized when 

. 

The figure below summarizes this information in a qualitative manner, which is the manner in 

which you are most likely to find it on SAT II Physics. In this figure,  v signifies velocity,  

signifies the restoring force, signifies the tension in the pendulum string, U signifies potential 

energy, and KE signifies kinetic energy.

112



Velocity

Calculating the velocity of the pendulum bob at the equilibrium position requires that we arrange 

our coordinate system so that the height of the bob at the equilibrium position is zero. Then the 

total mechanical energy is equal to the kinetic energy at the equilibrium point where U = 0. The 

total mechanical energy is also equal to the total potential energy at where KE = 0. Putting 

these equalities together, we get

But what is h? 

From the figure, we see that . If we plug that value into the equation above, 

we can solve for v:
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Don’t let a big equation frighten you. Just register what it conveys: the longer the string and the 

greater the angle, the faster the pendulum bob will move.

How This Knowledge Will Be Tested
Again, don’t worry too much about memorizing equations: most of the questions on pendulum 

motion will be qualitative. There may be a question asking you at what point the tension in the 

rope is greatest (at the equilibrium position) or where the bob’s potential energy is maximized (at 

). It’s highly unlikely that you’ll be asked to give a specific number.

Key Formulas
Hooke’s 

Law

Period of 

Oscillation 

of a Spring

Frequency

Potential 

Energy of a 

Spring

Velocity of a 

Spring at 

the 

Equilibriu

m Position

Period of 

Oscillation 

of a 

Pendulum

Velocity of a 

Pendulum 

Bob at the 

Equilibriu

m Position
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Practice Questions

1. . Two masses,  m and  M, are connected to a pulley system attached to a table, as in the diagram 
above. What is the minimum value for the coefficient of static friction between mass  M and the 
table if the pulley system does not move?
(A) m/M
(B) M/m
(C) g (m/M)
(D) g (M/m)
(E) g(M – m)

2. . A mover pushes a box up an inclined plane, as shown in the figure above. Which of the following 
shows the direction of the normal force exerted by the plane on the box?
(A)

(B)

(C)

(D)

(E)

3. . Consider a block sliding down a frictionless inclined plane with acceleration  a. If we double the 
mass of the block, what is its acceleration?
(A) a/4
(B) a/2
(C) a

(D) 2a

(E) 4a
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4. . A 1 kg mass on a frictionless inclined plane is connected by a pulley to a hanging 0.5 kg mass, as 

in the diagram above. At what angle will the system be in equilibrium? cos 30Âº = sin 60Âº = , 

cos 60Âº = sin 30Âº = 1/2, cos 45Âº = sin 45Âº = 1/ .
(A) 0Âº
(B) –30Âº
(C) 30Âº
(D) 45Âº
(E) 60Âº

5. .
An object of mass m rests on a plane inclined at an angle of . What is the maximum value for the 
coefficient of static friction at which the object will slide down the incline?
(A)

(B)

(C)

(D)

(E)

6. . A  mass  on  a  frictionless  surface  is  attached  to  a  spring.  The  spring  is  compressed  from  its 
equilibrium position, B, to point A, a distance x from B. Point C is also a distance x from B, but in 
the opposite direction. When the mass is released and allowed to oscillated freely, at what point or 
points is its velocity maximized?

(A) A

(B) B

(C) C

(D) Both A and C
(E) Both A and B
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7. . An object  of  mass  3  kg  is  attached  to  a  spring  of  spring  constant  50  N/m.  How  far  is  the 
equilibrium position of this spring system from the point where the spring exerts no force on the 
object?
(A) 0.15 m
(B) 0.3 m
(C) 0.5 m
(D) 0.6 m
(E) 1.5 m

Questions 8–10 refer  to a  pendulum in its  upward swing.  That is,  the  velocity  vector  for 
the pendulum is pointing in the direction of E.

8. . What is the direction of the force of gravity on the pendulum bob?
(A) A

(B) B

(C) C

(D) D

(E) E

9. . What is the direction of the net force acting on the pendulum?
(A) A

(B) B

(C) C

(D) D

(E) E

10. . If the pendulum string is suddenly cut, what is the direction of the velocity vector of the pendulum 
bob the moment it is released?
(A) A

(B) B

(C) C

(D) D

(E) E

Explanations

1.      A     

If the pulley system doesn’t move, then the net force on both masses is zero. For mass m, that means that 

the force of gravity, mg, pulling it downward, is equal to the force of tension in the rope, pulling it upward. If 

the force of tension pulling mass m upward is mg, then the force of tension pulling mass M toward the edge 
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of the table is also mg. That means that the force of static friction resisting the pull of the rope must also 

equal mg. The force of static friction for mass M is Mg, where is the coefficient of static friction. Since 

this force must be equal to mg, we can readily solve for :

2.      C     

The normal force is always normal, i.e., perpendicular, to the surface that exerts it, and in a direction such 

that one of its components opposes gravity. In this case, the inclined plane’s surface exerts the force, so the 

normal force vector must be perpendicular to the slope of the incline, and in the upward direction.

3.      C     

The acceleration of any particle due to the force of gravity alone doesn’t depend on the mass, so the answer 

is C. Whether or not the mass is on an inclined plane doesn’t matter in the least bit. We can prove this by 

calculating the acceleration mathematically:

As you can see, the acceleration depends only on the angle of the incline, and not on the mass of the block.

4.      C     

The system will be in equilibrium when the net force acting on the 1 kg mass is equal to zero. A free-body 

diagram of the forces acting on the 1 kg mass shows that it is in equilibrium when the force of tension in the 

pulley rope is equal to mg sin , where m = 1 kg and is the angle of the inclined plane.
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Since the system is in equilibrium, the force of tension in the rope must be equal and opposite to the force of 

gravity acting on the 0.5 kg mass. The force of gravity on the 0.5 kg mass, and hence the force of tension in 

the rope, has a magnitude of 0.5 g. Knowing that the force of tension is equal to mg sin , we can now 

solve for :

5.      D     

The best way to approach this problem is to draw a free-body diagram:

From the diagram, we can see that there is a force of mg sin pulling the object down the incline. The force 

of static friction is given by N, where is the coefficient of static friction and N is the normal force. If the 

object is going to move, then mg sin > N. From the diagram, we can also see that N = mg cos , and 

with this information we can solve for :

This inequality tells us that the maximum value of is sin  / cos .

6.      B     

The velocity of a spring undergoing simple harmonic motion is a maximum at the equilibrium position, where 

the net force acting on the spring is zero.

7.      D     
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The equilibrium position is the position where the net force acting on the object is zero. That would be the 

point where the downward force of gravity, mg, is perfectly balanced out by the upward spring force, kx, 

where k is the spring constant and x is the object’s displacement. To solve this problem, we need to equate 

the two formulas for force and solve for x:

8.      D     

The force of gravity always operates directly downward on the surface of the Earth. It doesn’t matter what 

other forces act upon the body. Thus the answer is D.

9.      C     

The forces acting upon the object in this diagram are tension and gravity. The force of tension is along the 

direction of the rod, in the direction of A. The force of gravity is directly downward, in the direction of D. The 

net force acting on the pendulum bob is the vector sum of these two forces, namely C.

10.      E     

Since the instantaneous velocity of the pendulum bob is in the direction of E, that is the path that the object 

will travel along. Eventually, the force of gravity will cause the pendulum bob to fall downward, but the 

question only asks you for the instantaneous velocity of the bob the moment it is released.

Linear Momentum

THE CONCEPT OF linear momentum IS closely tied to the concept of force—in fact, Newton 

first defined his Second Law not in terms of mass and acceleration, but in terms of momentum. 

Like energy, linear momentum is a conserved quantity in closed systems, making it a very handy 

tool for solving problems in mechanics. On the whole, it is useful to analyze systems in terms of 

energy when there is  an exchange of  potential  energy and kinetic  energy. Linear  momentum, 

however,  is  useful  in  those  cases  where  there  is  no  clear  measure  for  potential  energy.  In 

particular,  we will  use  the  law of conservation of  momentum to  determine  the  outcome of 

collisions between two bodies.

What Is Linear Momentum?

Linear momentum is a vector quantity defined as the product of an object’s mass,  m,  and its 
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velocity, v. Linear momentum is denoted by the letter p and is called “momentum” for short:

Note that a body’s momentum is always in the same direction as its velocity vector. The units of 

momentum are kg · m/s.

Fortunately, the  way that  we use the  word  momentum in  everyday life  is  consistent  with the 

definition of momentum in physics. For example, we say that a BMW driving 20 miles per hour 

has less momentum than the same car speeding on the highway at 80 miles per hour. Additionally, 

we know that if a large truck and a BMW travel at the same speed on a highway, the truck has a 

greater  momentum than  the  BMW, because  the  truck  has  greater  mass.  Our  everyday  usage 

reflects the definition given above, that momentum is proportional to mass and velocity.

Linear Momentum and Newton’s Second Law
In Chapter 3, we introduced Newton’s Second Law as F = ma. However, since acceleration can be 

expressed as  ,  we could equally well express Newton’s Second Law as  F =  . 

Substituting p for mv, we find an expression of Newton’s Second Law in terms of momentum:

In fact, this is the form in which Newton first expressed his Second Law. It is more flexible than F 

= ma because it can be used to analyze systems where not just the velocity, but also the mass of a 

body changes, as in the case of a rocket burning fuel. 

Impulse 

The above version of Newton’s Second Law can be rearranged to define the impulse, J, delivered 

by a constant force, F. Impulse is a vector quantity defined as the product of the force acting on a 

body and the time interval during which the force is exerted. If the force changes during the time 

interval, F is the average net force over that time interval. The impulse caused by a force during a 

specific  time  interval  is  equal  to  the  body’s change  of  momentum during  that  time  interval: 

impulse, effectively, is a measure of change in momentum.

The unit of impulse is the same as the unit of momentum, kg · m/s.

EXAMPLE

A soccer player kicks a 0.1 kg ball that is initially at rest so that it moves with a velocity of 20 m/s. 
What is the impulse the player imparts to the ball? If the player’s foot was in contact with the ball for 
0.01 s, what was the force exerted by the player’s foot on the ball?

What is the impulse the player imparts to the ball?

Since impulse is simply the change in momentum, we need to calculate the difference between the 

ball’s initial momentum and its final momentum. Since the ball begins at rest, its initial velocity, 

and hence its initial momentum, is zero. Its final momentum is:
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Because the initial momentum is zero, the ball’s change in momentum, and hence its impulse, is 2 

kg · m/s.

What was the force exerted by the player’s foot on the ball?

Impulse is the product of the force exerted and the time interval over which it was exerted. It 

follows, then, that . Since we have already calculated the impulse and have been given 

the time interval, this is an easy calculation:

Impulse and Graphs
SAT II Physics may also present you with a force vs. time graph, and ask you to calculate the 

impulse. There is a single, simple rule to bear in mind for calculating the impulse in force vs. time 

graphs:

The impulse caused by a force during a specific time interval is equal to the area underneath the  

force vs. time graph during the same interval. 

If you recall, whenever you are asked to calculate the quantity that comes from multiplying the 

units measured by the y-axis with the units measured by the x-axis, you do so by calculating the 

area under the graph for the relevant interval.

EXAMPLE

What is the impulse delivered by the force graphed in the figure above between t = 0 and t = 5?

The impulse over this time period equals the area of a triangle of height 4 and base 4 plus the area 

of a rectangle of height 4 and width 1. A quick calculation shows us that the impulse is:
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Conservation of Momentum

If  we  combine  Newton’s  Third  Law with  what  we  know about  impulse,  we  can  derive  the 

important and extremely useful law of conservation of momentum.

Newton’s Third Law tells us that, to every action, there is an equal and opposite reaction. If object 

A exerts a force F on object B, then object B exerts a force –F on object A. The net force exerted 

between objects A and B is zero.

The impulse equation,  , tells us that if the net force acting on a system is zero, 

then the impulse, and hence the change in momentum, is zero. Because the net force between the 

objects A and B that we discussed above is zero, the momentum of the system consisting of objects 

A and B does not change.

Suppose object A is a cue ball and object B is an eight ball on a pool table. If the cue ball strikes 

the eight ball, the cue ball exerts a force on the eight ball that sends it rolling toward the pocket. At 

the same time, the eight ball exerts an equal and opposite force on the cue ball that brings it to a 

stop.  Note that  both the cue ball  and the eight  ball  each experience a change in  momentum. 

However, the sum of the momentum of the cue ball and the momentum of the eight ball remains 

constant throughout. While the initial momentum of the cue ball, , is not the same as its final 

momentum,  ,  and the initial momentum of the eight ball,  ,  is not the same as its final 

momentum, , the initial momentum of the two balls combined is equal to the final momentum 

of the two balls combined:

The conservation of momentum only applies to systems that have no external forces acting upon 

them. We call such a system a closed or isolated system: objects within the system may exert 

forces on other objects within the system (e.g., the cue ball can exert a force on the eight ball and 

vice versa), but no force can be exerted between an object outside the system and an object within 

the system. As a result, conservation of momentum does not apply to systems where friction is a 

factor.

Conservation of Momentum on SAT II Physics
The conservation of momentum may be tested both quantitatively and qualitatively on SAT II 

Physics. It is quite possible, for instance, that SAT II Physics will contain a question or two that 

involves  a  calculation  based  on  the  law  of  conservation  of  momentum.  In  such  a  question, 

“conservation of momentum” will not be mentioned explicitly, and even “momentum” might not 

be mentioned. Most likely, you will be asked to calculate the velocity of a moving object after a 

collision of  some sort,  a  calculation that  demands that  you apply the  law of  conservation of 

momentum.

Alternately,  you  may  be  asked  a  question  that  simply  demands  that  you  identify  the  law of 

conservation of momentum and know how it is applied. The first example we will look at is of this 

qualitative type, and the second example is of a quantitative conservation of momentum question.

EXAMPLE 1
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An apple of mass m falls into the bed of a moving toy truck of mass M. Before the apple lands in the 
car, the car is moving at constant velocity v on a frictionless track. Which of the following laws would 
you use to find the speed of the toy truck after the apple has landed? 
(A) Newton’s First Law
(B) Newton’s Second Law
(C) Kinematic equations for constant acceleration
(D) Conservation of mechanical energy
(E) Conservation of linear momentum

Although the title of the section probably gave the solution away, we phrase the problem in this 

way because you’ll find questions of this sort quite a lot on SAT II Physics. You can tell a question 

will rely on the law of conservation of momentum for its solution if you are given the initial 

velocity of an object and are asked to determine its final velocity after a change in mass or a 

collision with another object.

Some Supplemental Calculations

But how would we use conservation of momentum to find the speed of the toy truck after the 

apple has landed? 

First, note that the net force acting in the  x direction upon the apple and the toy truck is zero. 

Consequently, linear momentum in the  x direction is conserved. The initial  momentum of the 

system in the x direction is the momentum of the toy truck, . 

Once the apple is in the truck, both the apple and the truck are traveling at the same speed,  . 

Therefore, . Equating and , we find:
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As we might expect, the final velocity of the toy truck is less than its initial velocity. As the toy 

truck gains the apple as cargo, its mass increases and it slows down. Because momentum is 

conserved and is directly proportional to mass and velocity, any increase in mass must be 

accompanied by a corresponding decrease in velocity.

EXAMPLE 2

A cannon of mass 1000 kg launches a cannonball of mass 10 kg at a velocity of 100 m/s. At what 
speed does the cannon recoil?

Questions involving firearms recoil are a common way in which SAT II Physics may test your 

knowledge of conservation of momentum. Before we dive into the math, let’s get a clear picture of 

what’s going on here. Initially the cannon and cannonball are at rest, so the total momentum of the 

system is zero. No external forces act on the system in the horizontal direction, so the system’s 

linear momentum in this direction is constant. Therefore the momentum of the system both before 

and after the cannon fires must be zero.

Now let’s make some calculations. When the cannon is fired, the cannonball shoots forward with 

momentum (10 kg)(100 m/s) = 1000 kg · m/s. To keep the total momentum of the system at zero, 

the cannon must then recoil with an equal momentum:

Any time a gun, cannon, or an artillery piece releases a projectile, it experiences a “kick” and 

moves in the opposite direction of the projectile. The more massive the firearm, the slower it 

moves. 

Collisions

A collision occurs when two or more objects hit each other. When objects collide, each object 

feels a force for a short amount of time. This force imparts an impulse, or changes the momentum 
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of each of the colliding objects. But if the system of particles is isolated, we know that momentum 

is conserved. Therefore, while the momentum of each individual particle involved in the collision 

changes, the total momentum of the system remains constant.

The procedure for analyzing a collision depends on whether the process is  elastic or  inelastic. 

Kinetic energy is conserved in elastic collisions, whereas kinetic energy is converted into other 

forms of energy during an inelastic collision. In both types of collisions, momentum is conserved. 

Elastic Collisions
Anyone who plays pool has observed elastic collisions. In fact, perhaps you’d better head over to 

the pool hall right now and start studying! Some kinetic energy is converted into sound energy 

when pool balls collide—otherwise, the collision would be silent—and a very small amount of 

kinetic energy is lost to friction. However, the dissipated energy is such a small fraction of the 

ball’s kinetic energy that we can treat the collision as elastic. 

Equations for Kinetic Energy and Linear Momentum

Let’s examine an elastic collision between two particles of mass and , respectively. Assume 

that the collision is head-on, so we are dealing with only one dimension—you are unlikely to find 

two-dimensional collisions of any complexity on SAT II Physics. The velocities of the particles 

before the elastic collision are  and  , respectively. The velocities of the particles after the 

elastic collision are and . Applying the law of conservation of kinetic energy, we find:

Applying the law of conservation of linear momentum:

These two equations put together will help you solve any problem involving elastic collisions. 

Usually, you will be given quantities for , , and , and can then manipulate the two 

equations to solve for and .

EXAMPLE
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A pool player hits the eight ball, which is initially at rest, head-on with the cue ball. Both of these balls 

have the same mass, and the velocity of the cue ball is initially . What are the velocities of the two 
balls after the collision? Assume the collision is perfectly elastic.

Substituting and into the equation for conservation of kinetic energy we 

find:

Applying the same substitutions to the equation for conservation of momentum, we find:

If we square this second equation, we get:

By subtracting the equation for kinetic energy from this equation, we get:

The only way to account for this result is to conclude that and consequently . In 

plain English, the cue ball and the eight ball swap velocities: after the balls collide, the cue ball 

stops and the eight ball shoots forward with the initial velocity of the cue ball. This is the simplest 

form of an elastic collision, and also the most likely to be tested on SAT II Physics.

Inelastic Collisions
Most collisions are inelastic because kinetic energy is transferred to other forms of energy—such 

as thermal energy, potential energy, and sound—during the collision process. If you are asked to 

determine if a collision is elastic or inelastic, calculate the kinetic energy of the bodies before and 

after the collision. If kinetic energy is not conserved, then the collision is inelastic. Momentum is 
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conserved in all inelastic collisions.

On the whole, inelastic collisions will only appear on SAT II Physics qualitatively. You may be 

asked to identify a collision as inelastic,  but  you won’t be expected to calculate the resulting 

velocities of the objects involved in the collision. The one exception to this rule is in the case of 

completely inelastic collisions.

Completely Inelastic Collisions

A completely inelastic collision, also called a “perfectly” or “totally” inelastic collision, is one in 

which  the  colliding  objects  stick  together  upon  impact.  As  a  result,  the  velocity  of  the  two 

colliding objects is the same after they collide. Because  , it is possible to solve 

problems asking about the resulting velocities of objects in a completely inelastic collision using 

only the law of conservation of momentum.

EXAMPLE

Two gumballs, of mass m and mass 2m respectively, collide head-on. Before impact, the gumball of 

mass m is moving with a velocity  , and the gumball of mass 2m is stationary. What is the final 

velocity, , of the gumball wad?

First, note that the gumball wad has a mass of m + 2m = 3m. The law of conservation of 

momentum tells us that , and so . Therefore, the final gumball wad 

moves in the same direction as the first gumball, but with one-third of its velocity. 

Collisions in Two Dimensions
Two-dimensional  collisions,  while  a  little  more  involved  than  the  one-dimensional  examples 

we’ve  looked  at  so  far,  can  be  treated  in  exactly  the  same  way  as  their  one-dimensional 

counterparts. Momentum is still conserved, as is kinetic energy in the case of elastic collisions. 

The significant difference is that you will have to break the trajectories of objects down into x- and 

y-components. You will then be able to deal with the two components separately: momentum is 

conserved in the x direction, and momentum is conserved in the y direction. Solving a problem of 
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two-dimensional  collision  is  effectively  the  same  thing  as  solving  two  problems  of  one-

dimensional collision.

Because SAT II Physics generally steers clear of making you do too much math, it’s unlikely that 

you’ll be faced with a problem where you need to calculate the final velocities of two objects that 

collide two-dimensionally. However, questions that test your understanding of two-dimensional 

collisions qualitatively are perfectly fair game.

EXAMPLE

A pool player hits the eight ball with the cue ball, as illustrated above. Both of the billiard balls have 
the same mass, and the eight ball is initially at rest. Which of the figures below illustrates a possible 
trajectory of the balls, given that the collision is elastic and both balls move at the same speed?

The correct answer choice is D, because momentum is not conserved in any of the other figures. 

Note that the initial momentum in the y direction is zero, so the momentum of the balls in the y 

direction after the collision must also be zero. This is only true for choices D and E. We also know 

that the initial momentum in the x direction is positive, so the final momentum in the x direction 

must also be positive, which is not true for E. 

Center of Mass

When calculating trajectories  and collisions,  it’s  convenient  to  treat  extended  bodies,  such  as 

boxes and balls, as point masses. That way, we don’t need to worry about the shape of an object, 

but can still take into account its mass and trajectory. This is basically what we do with free-body 

diagrams. We can treat objects, and even systems, as point masses, even if they have very strange 

shapes or are rotating in complex ways. We can make this simplification because there is always a 

point in the object or system that has the same trajectory as the object or system as a whole would 

have if all its mass were concentrated in that point. That point is called the object’s or system’s 

center of mass.

Consider the trajectory of a diver jumping into the water. The diver’s trajectory can be broken 
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down into the translational movement of his center of mass, and the rotation of the rest of his body 

about that center of mass.

A human being’s center of mass is located somewhere around the pelvic area. We see here that, 

though the diver’s head and feet and arms can rotate and move gracefully in space, the center of 

mass in his pelvic area follows the inevitable parabolic trajectory of a body moving under the 

influence of gravity. If we wanted to represent the diver as a point mass, this is the point we would 

choose. 

Our example suggests that Newton’s Second Law can be rewritten in terms of the motion of the 

center of mass:

Put in this form, the Second Law states that the net force acting on a system, , is equal to the 

product of the total mass of the system, M, and the acceleration of the center of mass, . Note 

that if the net force acting on a system is zero, then the center of mass does not accelerate. 

Similarly, the equation for linear momentum can be written in terms of the velocity of the center 

of mass:

You will probably never need to plug numbers into these formulas for SAT II Physics, but it’s 

important to understand the principle: the rules of dynamics and momentum apply to systems as a 

whole just as they do to bodies.

Calculating the Center of Mass
The center of mass of an object of uniform density is the body’s geometric center. Note that the 

center of mass does not need to be located within the object itself. For example, the center of mass 

of a donut is in the center of its hole. 
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For a System of Two Particles

For a collection of particles, the center of mass can be found as follows. Consider two particles of 

mass and separated by a distance d:

If you choose a coordinate system such that both particles fall on the x-axis, the center of mass of 

this system, , is defined by:

For a System in One Dimension

We can generalize this definition of the center of mass for a system of n particles on a line. Let the 

positions of these particles be , , . . ., . To simplify our notation, let M be the total mass of 

all  n particles  in  the  system,  meaning  .  Then,  the  center  of  mass  is 

defined by:

For a System in Two Dimensions

Defining the center of mass for a two-dimensional system is just a matter of reducing each particle 

in  the  system  to  its  x- and  y-components.  Consider  a  system  of  n particles  in  a  random 

arrangement of x-coordinates , , . . . , and y-coordinates , , . . ., . The x-coordinate 

of the center of mass is given in the equation above, while the y-coordinate of the center of mass 

is: 

How Systems Will Be Tested on SAT II Physics

The formulas we give here for systems in one and two dimensions are general formulas to help 

you understand the principle by which the center of mass is determined. Rest assured that for SAT 

II Physics, you’ll never have to plug in numbers for mass and position for a system of several 

particles. However, your understanding of center of mass may be tested in less mathematically 

rigorous ways.

For  instance,  you  may  be  shown a  system of  two  or  three  particles  and  asked  explicitly  to 

determine  the  center  of  mass  for  the  system,  either  mathematically  or  graphically.  Another 

example, which we treat below, is that of a system consisting of two parts, where one part moves 
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relative to the other. In this cases, it is important to remember that the center of mass of the system 

as a whole doesn’t move. 

EXAMPLE

A fisherman stands at the back of a perfectly symmetrical boat of length L. The boat is at rest in the 
middle of a perfectly still and peaceful lake, and the fisherman has a mass 1/4 that of the boat. If the 
fisherman walks to the front of the boat, by how much is the boat displaced?

If you’ve ever tried to walk from one end of a small boat to the other, you may have noticed that 

the boat moves backward as you move forward. That’s because there are no external forces acting 

on the system, so the system as a whole experiences no net force. If we recall the equation 

, the center of mass of the system cannot move if there is no net force acting on the 

system. The fisherman can move, the boat can move, but the system as a whole must maintain the 

same center of mass. Thus, as the fisherman moves forward, the boat must move backward to 

compensate for his movement.

Because the boat is symmetrical, we know that the center of mass of the boat is at its geometrical 

center,  at  x =  L/2.  Bearing  this  in  mind,  we  can  calculate  the  center  of  mass  of  the  system 

containing the fisherman and the boat:

Now let’s calculate where the center of mass of the fisherman-boat system is relative to the boat 

after the fisherman has moved to the front. We know that the center of mass of the fisherman-boat 

system hasn’t moved relative to the water, so its displacement with respect to the boat represents 

how much the boat has been displaced with respect to the water.

In the figure below, the center of mass of the boat is marked by a dot, while the center of mass of 

the fisherman-boat system is marked by an x.
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At the front end of the boat, the fisherman is now at position L, so the center of mass of the 

fisherman-boat system relative to the boat is

The center of mass of the system is now 3 /5 from the back of the boat. But we know the center of 

mass hasn’t moved, which means the boat has moved backward a distance of 1/5 L, so that the 

point 3/ 5 L is now located where the point 2 /5 L was before the fisherman began to move.
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Practice Questions

1. . An athlete of mass 70.0 kg applies a force of 500 N to a 30.0 kg luge, which is initially at rest, over 
a period of 5.00 s before jumping onto the luge. Assuming there is no friction between the luge and 
the track on which it runs, what is its velocity after the athlete jumps on?
(A) 12.5 m/s
(B) 25.0 m/s
(C) 35.7 m/s
(D) 83.3 m/s
(E) 100 m/s

2. . The graph above shows the amount of force applied to an initially stationary 20 kg curling rock over 
time. What is the velocity of the rock after the force has been applied to it?
(A) 1.25 m/s
(B) 5 m/s
(C) 10 m/s
(D) 25 m/s
(E) 50 m/s

3. . A 60 kg man holding a 20 kg box rides on a skateboard at a speed of 7 m/s. He throws the box 
behind him, giving it a velocity of 5 m/s. with respect to the ground. What is his velocity after 
throwing the object?
(A) 8 m/s
(B) 9 m/s
(C) 10 m/s
(D) 11 m/s
(E) 12 m/s
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4. . A scattering experiment is done with a 32 kg disc and two 8 kg discs on a frictionless surface. In 
the initial state of the experiment, the heavier disc moves in the x direction with velocity v = 25 
m/s toward the lighter discs, which are at rest. The discs collide elastically. In the final state, the 
heavy disc is at rest and the two smaller discs scatter outward with the same speed. What is the x-
component of the velocity of each of the 8 kg discs in the final state?
(A) 12.5 m/s
(B) 16 m/s
(C) 25 m/s
(D) 50 m/s
(E) 100 m/s

5. . An moving object has kinetic energy  KE = 100 J and momentum p = 50 kg Â· m/s. What is its 
mass?
(A) 2 kg
(B) 4 kg
(C) 6.25 kg
(D) 12.5 kg
(E) 25 kg

6. . An object of mass m moving with a velocity v collides with another object of mass M. If the two 
objects stick together, what is their velocity?
(A)

(B)

(C)

(D)

(E) Zero
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7. . A body of mass m sliding along a frictionless surface collides with another body of mass m, which is 
stationary before impact. The two bodies stick together.  If  the kinetic energy of  the two-body 
system is E, what is the initial velocity of the first mass before impact?
(A)

(B)

(C)

(D)

(E)

8. . A hockey puck of mass m is initially at rest on a frictionless ice rink. A player comes and hits the 
puck, imparting an impulse of J. If the puck then collides with another object of mass M at rest and 
sticks to it, what is the final velocity of the two-body system?
(A)

(B)

(C)

(D)

(E)

Questions  9  and  10  refer  to  two  1  kg masses  moving  toward  each  other,  one  mass  with 

velocity = 10 m/s, the other with velocity = 20 m/s.

9. . What is the velocity of the center of mass?
(A) 0 m/s
(B) 5 m/s to the left
(C) 10 m/s to the left
(D) 15 m/s to the left
(E) 20 m/s to the left

10. . What is the total energy of the system?
(A) 50 J
(B) 150 J
(C) 200 J
(D) 250 J
(E) 400 J

Explanations
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1.      B     

The athlete imparts a certain impulse to the luge over the 5-s period that is equal to . This impulse 

tells us the change in momentum for the luge. Since the luge starts from rest, this change in momentum 

gives us the total momentum of the luge:

The total momentum of the luge when the athlete jumps on is 2500 kg · m/s. Momentum is the product of 

mass and velocity, so we can solve for velocity by dividing momentum by the combined mass of the athlete 

and the luge:

2.      B     

The area under a force vs. time graph tells us the impulse given to the rock. Since the rock is motionless at 

t = 0, the impulse given to the rock is equal to the rock’s total momentum. The area under the graph is a 

triangle of height 50 N and length 4 s:

Calculating the rock’s velocity, then, is simply a matter of dividing its momentum by its mass:

3.      D     

This is a conservation of momentum problem. The initial momentum of the system must be equal to the final 

momentum. The initial momentum of the system is:
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The final momentum of the system is the sum of the momentum of the box and of the skateboarder. Since 

the box is thrown in the opposite direction of the skateboard’s initial momentum, it will have a negative 

momentum. Because the final momentum and the initial momentum are equal, we know that the final 

momentum of the skateboarder minus the momentum of the box will equal 560 kg · m/s. With this 

information, we can solve for v, the skateboarder’s final velocity:

4.      D     

The law of conservation of linear momentum tells us that the x-component of the system’s momentum must 

be equal before and after the collision. The x-component of the system’s momentum before the collision is 

the momentum of the large disc. The x-component of the system’s momentum after the collision is the x-

component of the momentum of both of the smaller discs put together. Since momentum is p = mv, and 

since the larger disc has twice the mass of the two smaller discs put together, that means that the velocity of 

the two smaller discs must be twice the velocity of the larger disc; that is, 50 m/s.

5.      D     

We have equations for kinetic energy, KE = 1/2 mv
2, and momentum, p = mv, both of which include 

variables for mass and velocity. If we first solve for velocity, we can then plug that value into the equation 

and solve for mass:

If v = 4 m/s, then we can plug this value into the equation for momentum to find that p = 4m = 50 kg · 

m/s, and conclude that m = 12.5 kg.

6.      B     

The law of conservation of momentum tells us that the initial momentum of the system is equal to the final 

momentum of the system. The initial momentum is p = mv, and the final momentum is 

, where is the final velocity of the two objects. Knowing that , we can solve 

for :
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7.      E     

Momentum is conserved in this collision. If the mass is moving with velocity v before impact and the two-

mass system is moving with velocity after impact, we know that . We also know that the 

kinetic energy of the two-body system is E = 1/2
. If we solve for , we find:

From the equation , we can conclude that the initial velocity of the first body, v, is double . 

If the value for is given in terms of KE in the equation above, then the value of v is simply twice that, 

.

8.      C     

Impulse is defined as the change in momentum. Since the hockey puck is initially at rest, its change in 

momentum is simply its momentum after it has been set in motion. In other words, the momentum of the 

puck in motion is equal to J.

When the puck collides with the other object, momentum is conserved, so the system of the puck and the 

other object also has a momentum of J. This momentum is equal to the mass, m + M, of the system, 

multiplied by the velocity of the two-body system, . Solving for is now quite easy:

9.      B     

The velocity of the center of mass of the system is the same as the total velocity of the system. To find the 

total velocity of the system, we need to find the total momentum of the system and divide it by the total 

mass of the system.
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The momentum of the first mass is = 
10

 kg · m/s to the right, and the momentum of the second mass is 

= 
20

 kg · m/s to the left. Therefore, the total momentum of the system is + = 
10

 kg · m/s to the 

left. Since the total mass of the system is 2 kg, we can find the total velocity of the system by dividing its 

momentum by its mass:

10.      D     

The only energy in the system is the kinetic energy of the two masses. These can be determined through two 

easy calculations:

Adding these two energies together, we find that the total energy of the system is 50 J + 200 J = 250 J.

Rotational Motion

UNTIL THIS CHAPTER, WE HAVE FOCUSED almost entirely on  translational motion, the 

motion of bodies moving through space. But there is a second kind of motion, called rotational 

motion, which deals with the rotation of a body about its center of mass. The movement of any 

object can be described through the combination of translational motion of the object’s center of 

mass and its rotational motion about that center of mass. For example, look at the diver jumping 

into the water that we saw in the previous chapter. 
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The diver’s translational motion is the parabolic trajectory of her center of mass. However, if that 

were the only motion of the diver’s body, diving competitions would be considerably more boring. 

What astonishes fans and impresses judges is the grace and fluidity of the rotational motion of the 

diver’s arms, legs, feet, etc., about that center of mass.

You will find that rotational motion and translational motion have a lot in common. In fact, aside 

from  a  few  basic  differences,  the  mechanics  of  rotational  motion  are  identical  to  those  of 

translational motion. We’ll begin this chapter by introducing some basic concepts that are distinct 

to  rotational  motion.  After  that,  we  will  recapitulate  what  we  covered  in  the  chapters  on 

translational  motion,  explaining  how the  particularities  of  rotational  motion  differ  from their 

translational  counterparts.  We will  examine,  in  turn,  the  rotational  equivalents  for  kinematic 

motion, dynamics, energy, and momentum.

There will be at most one or two questions on rotational motion on any given SAT II test. On the 

whole, they tend to center around the concepts of torque and equilibrium.

Important Definitions

There  are  a  few  basic  physical  concepts  that  are  fundamental  to  a  proper  understanding  of 

rotational  motion.  With  a  steady  grasp  of  these  concepts,  you  should  encounter  no  major 

difficulties  in  making  the  transition  between  the  mechanics  of  translational  motion  and  of 

rotational motion.

Rigid Bodies
The questions on rotational motion on SAT II Physics deal only with rigid bodies. A rigid body is 

an object that retains its overall shape, meaning that the particles that make up the rigid body stay 

in the same position relative to one another. A pool ball is one example of a rigid body since the 

shape of the ball is constant as it rolls and spins. A wheel, a record, and a top are other examples of 

rigid bodies that commonly appear in questions involving rotational motion. By contrast, a slinky 

is not a rigid body, because its coils expand, contract,  and bend,  so that its motion would be 

considerably more difficult to predict if you were to spin it about.

Center of Mass
The center of mass of an object, in case you have forgotten, is the point about which all the matter 

in the object is evenly distributed. A net force acting on the object will accelerate it in just the 

same way as if all the mass of the object were concentrated in its center of mass. We looked at the 
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concept of center of mass in the previous chapter’s discussion of linear momentum. The concept 

of center of mass will  play an even more central  role  in this chapter, as rotational  motion is 

essentially defined as the rotation of a body about its center of mass. 

Axis of Rotation

The rotational motion of a rigid body occurs when every point in the body moves in a circular path 

around a line called the axis of rotation, which cuts through the center of mass. One familiar 

example of rotational motion is that of a spinning wheel. In the figure at right, we see a wheel 

rotating counterclockwise around an axis labeled O that is perpendicular to the page.

As the wheel rotates, every point in the rigid body makes a circle around the axis of rotation, O. 

Radians
We’re all very used to measuring angles in degrees, and know perfectly well that there are 360º in 

a circle,  90º in a right angle, and so on. You’ve probably noticed that  360 is also a convenient 

number because so many other numbers divide into it. However, this is a totally arbitrary system 

that has its origins in the Ancient Egyptian calendar which was based on a 360-day year. 

It makes far more mathematical sense to measure angles in radians (rad). If we were to measure 

the arc of a circle that has the same length as the radius of that circle, then one radian would be the 

angle made by two radii drawn to either end of the arc.

Converting between Degrees and Radians

It is unlikely that SAT II Physics will specifically ask you to convert between degrees and radians, 

but it will save you time and headaches if you can make this conversion quickly and easily. Just 

remember this formula:

You’ll quickly get used to working in radians, but below is a conversion table for the more 

commonly occurring angles.
Value in degrees Value in radians
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30 π/6

45 π/4 

60 π/3 

90 π/2 

180 π

360 2π

Calculating the Length of an Arc

The advantage of using radians instead of degrees, as will quickly become apparent, is that the 

radian is based on the nature of angles and circles themselves, rather than on the arbitrary fact of 

how long it takes our Earth to circle the sun.

For example, calculating the length of any arc in a circle is much easier with radians than with 

degrees. We know that the circumference of a circle is given by P = 2 rπ , and we know that there 

are 2π radians in a circle. If we wanted to know the length, l, of the arc described by any angle , 

we would know that this arc is a fraction of the perimeter, ( /2 )π P. Because P = 2 rπ , the length of 

the arc would be:

Rotational Kinematics 

You are  now going  to  fall  in  love  with the  word  angular.  You’ll  find  that  for  every  term in 

kinematics  that  you’re  familiar  with,  there’s an “angular”  counterpart:  angular displacement, 

angular velocity,  angular acceleration,  etc.  And you’ll  find  that,  “angular”  aside,  very little 

changes when dealing with rotational kinematics.

Angular Position, Displacement, Velocity, and Acceleration
SAT II Physics is unlikely to have any questions that simply ask you to calculate the angular 

position, displacement, velocity, or acceleration of a rotating body. However, these concepts form 

the basis of rotational mechanics, and the questions you  will encounter on SAT II Physics will 

certainly be easier if you’re familiar with these fundamentals. 

Angular Position

By convention, we measure angles in a circle in a counterclockwise direction from the positive x-

axis. The angular position of a particle is the angle,  , made between the line connecting that 

particle  to  the  origin,  O,  and  the  positive  x-axis,  measured  counterclockwise.  Let’s  take  the 

example of a point P on a rotating wheel:
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In this figure, point P has an angular position of . Note that every point on the line has the 

same angular position: the angular position of a point does not depend on how far that point is 

from the origin, O.

We can relate the angular position of P to the length of the arc of the circle between P and the x-

axis by means of an easy equation:

In this equation, l is the length of the arc, and r is the radius of the circle.

Angular Displacement

Now imagine that  the wheel  is  rotated so that  every point  on line  moves from an initial 

angular position of to a final angular position of . The angular displacement, , of line 

is:

For example, if you rotate a wheel counterclockwise such that the angular position of line 

changes from = 45º = /4 to π = 135º = 3 /4π , as illustrated below, then the angular 

displacement of line is 90º or π/2 radians.

For line to move in the way described above, every point along the line must rotate 90º 

counterclockwise. By definition, the particles that make up a rigid body must stay in the same 
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relative position to one another. As a result, the angular displacement is the same for every point in 

a rotating rigid body. 

Also note that the angular distance a point has rotated may or may not equal that point’s angular 

displacement. For example, if you rotate a record 45º clockwise and then 20º counterclockwise, 

the angular displacement of the record is 25º, although the particles have traveled a total angular 

distance of  65º.  Hopefully, you’ve already had it  hammered into your head that  distance and 

displacement are not the same thing: well, the same distinction applies with angular distance and 

angular displacement.

Angular Velocity

Angular velocity,  , is defined as the change in the angular displacement over time. Average 

angular velocity, , is defined by:

Angular velocity is typically given in units of rad/s. As with angular displacement, the angular 

velocity of every point on a rotating object is identical.

Angular Acceleration

Angular acceleration, , is defined as the rate of change of angular velocity over time. Average 

angular acceleration, , is defined by:

Angular acceleration is typically given in units of rad/s2.

Frequency and Period

You’ve encountered frequency and period when dealing with springs and simple harmonic motion, 

and you will encounter them again in the chapter  on waves.  These terms are also relevant to 

rotational motion, and SAT II Physics has been known to test the relation between angular velocity 

and angular frequency and period. 

Angular Frequency
Angular frequency, f, is defined as the number of circular revolutions in a given time interval. It 

is commonly measured in units of Hertz (Hz), where 1 Hz = 1 s–1. For example, the second hand 

on a clock completes one revolution every 60 seconds and therefore has an angular frequency of 1 

/60 Hz. 

The relationship between frequency and angular velocity is:

For example, the second hand of a clock has an angular velocity of s. 

Plugging that value into the equation above, we get

which we already determined to be the frequency of the second hand of a clock.
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Angular Period
Angular period,  T, is defined as the time required to complete one revolution and is related to 

frequency by the equation:

Since we know that the frequency of the second hand is 1/60 Hz, we can quickly see that the period 

of the second hand is 60 s. It takes 60 seconds for the second hand to complete a revolution, so the 

period of the second hand is 60 seconds. Period and angular velocity are related by the equation

EXAMPLE

The Earth makes a complete rotation around the sun once every 365.25 days. What is the Earth’s 
angular velocity?

The question tells us that the Earth has a period of T = 365.25 days. If we plug this value into the 

equation relating period and angular velocity, we find:

Note, however, that this equation only gives us the Earth’s angular velocity in terms of radians per 

day. In terms of radians per second, the correct answer is:

Relation of Angular Variables to Linear Variables 
At any given moment, a rotating particle has an instantaneous linear velocity and an instantaneous 

linear  acceleration.  For  instance,  a  particle  P that  is  rotating  counterclockwise  will  have  an 

instantaneous velocity in the positive  y direction at the moment it is at the positive  x-axis. In 

general, a rotating particle has an instantaneous velocity that is tangent to the circle described by 

its rotation and an instantaneous acceleration that points toward the center of the circle.

On SAT II Physics, you may be called upon to determine a particle’s linear velocity or 
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acceleration given its angular velocity or acceleration, or vice versa. Let’s take a look at how this 

is done.

Distance

We saw earlier that the angular position, , of a rotating particle is related to the length of the arc, 

l, between the particle’s present position and the positive x-axis by the equation = l/r, or l = r. 

Similarly, for any angular displacement,  , we can say that the length,  l, of the arc made by a 

particle undergoing that displacement is

Note that the length of the arc gives us a particle’s distance traveled rather than its displacement, 

since displacement is a vector quantity measuring only the straight-line distance between two 

points, and not the length of the route traveled between those two points.

Velocity and Acceleration

Given  the  relationship  we  have  determined  between  arc  distance  traveled,  l,  and  angular 

displacement,  ,  we  can  now  find  expressions  to  relate  linear  and  angular  velocity  and 

acceleration.

We can express the instantaneous linear velocity of a rotating particle as  v = l/t, where  l is the 

distance traveled along the arc. From this formula, we can derive a formula relating linear and 

angular velocity:

In turn, we can express linear acceleration as a = v/t, giving us this formula relating linear and 

angular acceleration:

EXAMPLE

The radius of the Earth is approximately m. What is the instantaneous velocity of a point on 
the surface of the Earth at the equator?

We know that  the period of  the Earth’s rotation is  24 hours,  or  seconds.  From the 

equation relating period, T, to angular velocity, , we can find the angular velocity of the Earth:

Now that we know the Earth’s angular velocity, we simply plug that value into the equation for 

linear velocity:
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They may not notice it, but people living at the equator are moving faster than the speed of sound.

Equations of Rotational Kinematics 
In Chapter 2 we defined the kinematic equations for bodies moving at constant acceleration. As 

we have seen, there are very clear rotational counterparts for linear displacement, velocity, and 

acceleration, so we are able to develop an analogous set of five equations for solving problems in 

rotational kinematics:

In these equations, is the object’s initial angular velocity at its initial position, .

Any questions on SAT II Physics that call upon your knowledge of the kinematic equations will 

almost  certainly be of  the translational  variety. However,  it’s worth noting just  how deep the 

parallels between translational and rotational kinematics run.

Vector Notation of Rotational Variables 
Angular velocity and angular acceleration are vector quantities; the equations above define their 

magnitudes but not their directions. Given that objects with angular velocity or acceleration are 

moving in a circle, how do we determine the direction of the vector? It may seem strange, but the 

direction of the vector for angular velocity or acceleration is actually perpendicular to the plane in 

which the object is rotating.

We determine the direction of the angular velocity vector using the  right-hand rule. Take your 

right hand and curl your fingers along the path of the rotating particle or body. Your thumb then 

points in the direction of the angular velocity of the body. Note that the angular velocity is along 

the body’s axis of rotation. 

The figure below illustrates a top spinning counterclockwise on a table. The right-hand rule shows 

that its angular velocity is in the upward direction. Note that if the top were rotating clockwise, 

then its angular velocity would be in the downward direction. 

148



To find the direction of a rigid body’s angular acceleration, you must first find the direction of the 

body’s angular velocity. Then, if the magnitude of the angular velocity is increasing, the angular 

acceleration is in the same direction as the angular velocity vector. On the other hand, if the 

magnitude of the angular velocity is decreasing, then the angular acceleration points in the 

direction opposite the angular velocity vector.

Rotational Dynamics

Just as we have rotational counterparts for displacement, velocity, and acceleration, so do we have 

rotational counterparts for force, mass, and Newton’s Laws. As with angular kinematics, the key 

here is to recognize the striking similarity between rotational and linear dynamics, and to learn to 

move between the two quickly and easily.

Torque
If  a  net  force is  applied  to  an object’s center  of  mass,  it  will  not  cause the  object  to  rotate. 

However, if a net force is applied to a point other than the center of mass, it will affect the object’s 

rotation. Physicists call the effect of force on rotational motion torque.

Torque Defined

Consider a lever mounted on a wall so that the lever is free to move around an axis of rotation O. 

In order to lift the lever, you apply a force F to point P, which is a distance r away from the axis of 

rotation, as illustrated below. 

Suppose the lever is very heavy and resists your efforts to lift it. If you want to put all you can into 

lifting this lever, what should you do? Simple intuition would suggest, first of all, that you should 
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lift with all your strength. Second, you should grab onto the end of the lever, and not a point near 

its axis of rotation. Third, you should lift in a direction that is perpendicular to the lever: if you 

pull very hard away from the wall or push very hard toward the wall, the lever won’t rotate at all.

Let’s summarize. In order to maximize torque, you need to:

1. Maximize the magnitude of the force, F, that you apply to the lever. 

2. Maximize the distance, r, from the axis of rotation of the point on the lever to which you 

apply the force. 

3. Apply the force in a direction perpendicular to the lever.

We can apply these three requirements to an equation for torque, :

In this equation, is the angle made between the vector for the applied force and the lever.

Torque Defined in Terms of Perpendicular Components

There’s another way of thinking about torque that may be a bit more intuitive than the definition 

provided above. Torque is the product of the distance of the applied force from the axis of rotation 

and the component of the applied force that is perpendicular to the lever arm. Or, alternatively, 

torque is the product of the applied force and the component of the length of the lever arm that 

runs perpendicular to the applied force.

We can express these relations mathematically as follows:

where and are defined below.

Torque Defined as a Vector Quantity

Torque, like angular velocity and angular acceleration, is a vector quantity. Most precisely, it is the 

cross product of the displacement vector, r, from the axis of rotation to the point where the force is 

applied, and the vector for the applied force, F.

To determine the direction of the torque vector, use the right-hand rule, curling your fingers 

around from the r vector over to the F vector. In the example of lifting the lever, the torque would 

be represented by a vector at O pointing out of the page.

EXAMPLE
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A student exerts a force of 50 N on a lever at a distance 0.4 m from its axis of rotation. The student 
pulls at an angle that is 60Âº above the lever arm. What is the torque experienced by the lever arm?

Let’s plug these values into the first equation we saw for torque:

This vector has its tail at the axis of rotation, and, according to the right-hand rule, points out of 

the page.

Newton’s First Law and Equilibrium
Newton’s Laws apply to torque just as they apply to force. You will find that solving problems 

involving torque is made a great deal easier if you’re familiar with how to apply Newton’s Laws 

to them. The First Law states:

If the net torque acting on a rigid object is zero, it will rotate with a constant angular velocity.

The  most  significant  application of  Newton’s First  Law in  this  context  is  with regard  to  the 

concept of equilibrium. When the net torque acting on a rigid object is zero, and that object is not 

already rotating, it will not begin to rotate. 

When SAT II Physics tests you on equilibrium, it will usually present you with a system where 

more than one torque is acting upon an object, and will tell you that the object is not rotating. That 

means that the net torque acting on the object is zero, so that the sum of all torques acting in the 

clockwise direction is equal to the sum of all torques acting in the counterclockwise direction. A 

typical SAT II Physics question will ask you to determine the magnitude of one or more forces 

acting on a given object that is in equilibrium.

EXAMPLE
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Two masses are  balanced on the scale  pictured above.  If  the bar  connecting  the two masses is 
horizontal and massless, what is the weight of mass m in terms of M?

Since the scale is not rotating, it is in equilibrium, and the net torque acting upon it must be zero. 

In other words, the torque exerted by mass M must be equal and opposite to the torque exerted by 

mass m. Mathematically,

Because m is three times as far from the axis of rotation as M, it applies three times as much 

torque per mass. If the two masses are to balance one another out, then M must be three times as 

heavy as m.

Newton’s Second Law
We have seen that acceleration has a rotational equivalent in angular acceleration,  , and that 

force has a rotational equivalent in torque, . Just as the familiar version of Newton’s Second Law 

tells us that the acceleration of a body is proportional to the force applied to it, the rotational 

version of Newton’s Second Law tells us that the angular acceleration of a body is proportional to 

the torque applied to it.

Of course, force is also proportional to mass, and there is also a rotational equivalent for mass: the 

moment of inertia,  I, which represents an object’s resistance to being rotated. Using the three 

variables, , I, and , we can arrive at a rotational equivalent for Newton’s Second Law:

As you might have guessed, the real challenge involved in the rotational version of Newton’s 

Second Law is sorting out the correct value for the moment of inertia.

Moment of Inertia

What might make a body more difficult to rotate? First of all, it will be difficult to set in a spin if it 

has a great mass: spinning a coin is a lot easier than spinning a lead block. Second, experience 

shows that the distribution of a body’s mass has a great effect on its potential for rotation. In 

general, a body will rotate more easily if its mass is concentrated near the axis of rotation, but the 

calculations that go into determining the precise moment of inertia for different bodies is quite 

complex. 

MOMENT OF INERTIA FOR A SINGLE PARTICLE

Consider a particle of mass  m that is tethered by a massless string of length  r to point  O,  as 

pictured below: 
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The torque that produces the angular acceleration of the particle is = rF, and is directed out of 

the page. From the linear version of Newton’s Second Law, we know that F = ma or F = m r. If 

we multiply both sides of this equation by r, we find:

If we compare this equation to the rotational version of Newton’s Second Law, we see that the 

moment of inertia of our particle must be mr2.

MOMENT OF INERTIA FOR RIGID BODIES

Consider a wheel, where every particle in the wheel moves around the axis of rotation. The net 

torque on the wheel is the sum of the torques exerted on each particle in the wheel. In its most 

general form, the rotational version of Newton’s Second Law takes into account the moment of 

inertia of each individual particle in a rotating system:

Of course, adding up the radius and mass of every particle in a system is very tiresome unless the 

system consists of only two or three particles. The moment of inertia for more complex systems 

can only be determined using calculus. SAT II Physics doesn’t expect you to know calculus, so it 

will give you the moment of inertia for a complex body whenever the need arises. For your own 

reference, however, here is the moment of inertia for a few common shapes.

In these figures, M is the mass of the rigid body, R is the radius of round bodies, and L is the 

distance on a rod between the axis of rotation and the end of the rod. Note that the moment of 

inertia depends on the shape and mass of the rigid body, as well as on its axis of rotation, and that 

for most objects, the moment of inertia is a multiple of MR2.

EXAMPLE 1
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A record of mass M and radius R is free to rotate around an axis through its center, O. A tangential 

force F is applied to the record. What must one do to maximize the angular acceleration?
(A) Make F and M as large as possible and R as small as possible
(B) Make M as large as possible and F and R as small as possible.
(C) Make F as large as possible and M and R as small as possible.
(D) Make R as large as possible and F and M as small as possible.
(E) Make F, M, and R as large as possible.

To answer this question, you don’t need to know exactly what a disc’s moment of inertia is—you 

just need to be familiar with the general principle that it will be some multiple of MR2.

The rotational version of Newton’s Second Law tells us that = I , and so = FR/I. Suppose we 

don’t know what I is, but we know that it is some multiple of MR2. That’s enough to formulate an 

equation telling us all we need to know:

As we can see, the angular acceleration increases with greater force, and with less mass and 

radius; therefore C is the correct answer.

Alternately, you could have answered this question by physical intuition. You know that the more 

force you exert on a record, the greater its acceleration. Additionally, if you exert a force on a 

small, light record, it will accelerate faster than a large, massive record. 

EXAMPLE 2
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The masses in the figure above are initially held at rest and are then released. If the mass of the 
pulley is M, what is the angular acceleration of the pulley? The moment of inertia of a disk spinning 

around its center is MR2.

This is the only situation on SAT II Physics where you may encounter a pulley that is not 

considered massless. Usually you can ignore the mass of the pulley block, but it matters when 

your knowledge of rotational motion is being tested.

In order to solve this problem, we first need to determine the net torque acting on the pulley, and 

then use Newton’s Second Law to determine the pulley’s angular acceleration. The weight of each 

mass is transferred to the tension in the rope, and the two forces of tension on the pulley block 

exert torques in opposite directions as illustrated below:

To calculate the torque one must take into account the tension in the ropes, the inertial resistance 

to motion of the hanging masses, and the inertial resistence of the pulley itself. The sum of the 

torques is given by:

Solve for the tensions using Newton’s second law. For Mass 1:

For Mass 2:

Remember that . Substitute into the first equation:

Because is positive, we know that the pulley will spin in the counterclockwise direction and the 

3m block will drop.

Kinetic Energy

There is a certain amount of energy associated with the rotational motion of a body, so that a ball 

rolling down a hill does not accelerate in quite the same way as a block sliding down a frictionless 
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slope.  Fortunately,  the  formula  for  rotational  kinetic  energy,  much  like  the  formula  for 

translational kinetic energy, can be a valuable problem-solving tool.

The kinetic energy of a rotating rigid body is:

Considering that I is the rotational equivalent for mass and is the rotational equivalent for 

velocity, this equation should come as no surprise.

An object, such as a pool ball, that is spinning as it travels through space, will have both rotational 

and translational kinetic energy:

In this formula, M is the total mass of the rigid body and is the velocity of its center of mass. 

This equation comes up most frequently in problems involving a rigid body that is rolling along a 

surface without sliding. Unlike a body sliding along a surface, there is no kinetic friction to slow 

the body’s motion. Rather, there is static friction as each point of the rolling body makes contact 

with the surface,  but  this  static friction does no work on the rolling object  and dissipates no 

energy.

EXAMPLE

A wheel of mass M and radius R is released from rest and rolls to the bottom of an inclined plane of 
height h without slipping. What is its velocity at the bottom of the incline? The moment of inertia of a 
wheel of mass M and radius R rotating about an axis through its center of mass is 1/2 MR2. 

Because the wheel loses no energy to friction, we can apply the law of conservation of mechanical 

energy. The change in the wheel’s potential energy is –mgh. The change in the wheel’s kinetic 

energy is . Applying conservation of mechanical energy:

It’s worth remembering that an object rolling down an incline will pick up speed more slowly than 
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an object sliding down a frictionless incline. Rolling objects pick up speed more slowly because 

only some of the kinetic energy they gain is converted into translational motion, while the rest is 

converted into rotational motion.

Angular Momentum

The  rotational  analogue  of  linear  momentum  is  angular  momentum,  L.  After  torque  and 

equilibrium, angular momentum is the aspect of rotational motion most likely to be tested on SAT 

II Physics. For the test, you will probably have to deal only with the angular momentum of a 

particle or body moving in a circular trajectory. In such a case, we can define angular momentum 

in terms of moment of inertia and angular velocity, just as we can define linear momentum in 

terms of mass and velocity:

The angular momentum vector always points in the same direction as the angular velocity vector.

Angular Momentum of a Single Particle
Let’s take the example of a tetherball of mass m swinging about on a rope of length r:

The tetherball has a moment of inertia of I = mr2 and an angular velocity of = v/r. Substituting 

these values into the formula for linear momentum we get:

This is the value we would expect from the cross product definition we saw earlier of angular 

momentum. The momentum, p = mv of a particle moving in a circle is always tangent to the circle 

and perpendicular to the radius. Therefore, when a particle is moving in a circle,

Newton’s Second Law and Conservation of Angular Momentum
In the previous chapter, we saw that the net force acting on an object is equal to the rate of change 

of the object’s momentum with time. Similarly, the net torque acting on an object is equal to the 

rate of change of the object’s angular momentum with time:

If the net torque action on a rigid body is zero, then the angular momentum of the body is constant 

or conserved. The law of conservation of angular momentum is another one of nature’s 

beautiful properties, as well as a very useful means of solving problems. It is likely that angular 
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momentum will be tested in a conceptual manner on SAT II Physics.

EXAMPLE

One of Brian Boitano’s crowd-pleasing skating moves involves initiating a spin with his arms extended 
and then moving his arms closer to his body. As he does so, he spins at a faster and faster rate. Which 
of the following laws best explains this phenomenon?
(A) Conservation of Mechanical Energy
(B) Conservation of Angular Momentum
(C) Conservation of Linear Momentum
(D) Newton’s First Law
(E) Newton’s Second Law

Given the context, the answer to this question is no secret: it’s B, the conservation of angular 

momentum. Explaining why is the interesting part.

As  Brian  spins  on  the  ice,  the  net  torque  acting  on  him  is  zero,  so  angular  momentum  is 

conserved. That means that I  is a conserved quantity. I is proportional to R2, the distance of the 

parts of Brian’s body from his axis of rotation. As he draws his arms in toward his body, his mass 

is more closely concentrated about his axis of rotation, so I decreases. Because I  must remain 

constant,  must  increase as  I decreases.  As a result,  Brian’s angular  velocity  increases as he 

draws his arms in toward his body.

Key Formulas
Angular 

Position

Definition of 

a Radian

Average 

Angular 
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Practice Questions

1. . The instantaneous velocity of a point on the outer edge of a disk with a diameter of 4 m that is 
rotating at 120 revolutions per minute is most nearly:
(A) 4 m/s
(B) 6 m/s
(C) 12 m/s
(D) 25 m/s
(E) 50 m/s

2. . A washing machine, starting from rest, accelerates within 3.14 s to a point where it is revolving at 
a frequency of 2.00 Hz. Its angular acceleration is most nearly:
(A) 0.100 rad/s2

(B) 0.637 rad/s2

(C) 2.00 rad/s2

(D) 4.00 rad/s2

(E) 6.28 rad/s2
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3. . What is the direction of the angular velocity vector for the second hand of a clock going from 0 to 
30 seconds?
(A) Outward from the clock face
(B) Inward toward the clock face
(C) Upward
(D) Downward
(E) To the right

4. . Which of the following are means of maximizing the torque of a force applied to a rotating object?
  I.  Maximize  the  magnitude  of  the  applied  force
 II.  Apply  the  force  as  close  as  possible  to  the  axis  of  rotation
III. Apply the force perpendicular to the displacement vector between the axis of rotation and the 
point of applied force
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

5. . What is the torque on the pivot of a pendulum of length R and mass m, when the mass is at an 

angle ?
(A)

(B)

(C)
mgR sin

(D)
mgR cos

(E)
mgR tan

6. . Two objects rest on a seesaw. The first object has a mass of 3 kg and rests 10 m from the pivot. 
The other rests 1 m from the pivot. What is the mass of the second object if the seesaw is in 
equilibrium?
(A) 0.3 kg
(B) 3 kg
(C) 10 kg
(D) 30 kg
(E) 50 kg
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7. . What is the angular acceleration of a 0.1 kg record with a radius of 0.1 m to which a torque of 0.05 

N Â· m is applied? The moment of inertia of a disk spinning about its center is 1/2MR2.
(A) 0.1 rad/s2

(B) 0.5 rad/s2

(C) 1 rad/s2

(D) 5 rad/s2

(E) 10 rad/s2

8. . A disk of mass m and radius R rolls down an inclined plane of height h without slipping. What is the 
velocity of the disk at the bottom of the incline? The moment of inertia for a disk is 1 /2 mR2.
(A)

(B)

(C)

(D)

(E)

9. . A  catapult  with a  basket  of  mass 50 kg launches a  200 kg rock  by  swinging  around from a 
horizontal to a vertical position with an angular velocity of 2.0 rad/s. Assuming the rest of the 
catapult is massless and the catapult arm is 10 m long, what is the velocity of the rock as it leaves 
the catapult?
(A) 10 m/s
(B) 20 m/s
(C) 25 m/s
(D) 50 m/s
(E) 100 m/s

10. . How should the mass of a rotating body of radius r be distributed so as to maximize its angular 
velocity?
(A) The mass should be concentrated at the outer edge of the body
(B) The mass should be evenly distributed throughout the body
(C) The mass should be concentrated at the axis of rotation
(D) The mass should be concentrated at a point midway between the axis of rotation and the 

outer edge of the body
(E) Mass distribution has no impact on angular velocity

Explanations
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1.      D     

An object that experiences 120 revolutions per minute experiences 2 revolutions per second; in other 

words, it rotates with a frequency of 2 Hz. We have formulas relating frequency to angular velocity and 

angular velocity to linear velocity, so solving this problem is simply a matter of finding an expression for 

linear velocity in terms of frequency. Angular and linear velocity are related by the formula , so we 

need to plug this formula into the formula relating frequency and angular velocity:

2.      D     

Frequency and angular velocity are related by the formula , and angular velocity and angular 

acceleration are related by the formula . In order to calculate the washing machine’s 

acceleration, then, we must calculate its angular velocity, and divide that number by the amount of time it 

takes to reach that velocity:

3.      B     

You need to apply the right-hand rule in order to solve this problem. Extend the fingers of your right hand 

upward so that they point to the 0-second point on the clock face, and then curl them around so that they 

point downward to the 30-second point on the clock face. In order to do this, you’ll find that your thumb 

must be pointing inward toward the clock face. This is the direction of the angular velocity vector.

4.      D     

The torque on an object is given by the formula , where F is the applied force and r is the 

distance of the applied force from the axis of rotation. In order to maximize this cross product, we need to 

maximize the two quantities and insure that they are perpendicular to one another. Statement I maximizes 

F and statement III demands that F and r be perpendicular, but statement II minimizes r rather than 

maximizes it, so statement II is false.

5.      C     

163



The torque acting on the pendulum is the product of the force acting perpendicular to the radius of the 

pendulum and the radius, . A free-body diagram of the pendulum shows us that the force acting 

perpendicular to the radius is . 

Since torque is the product of and
 R

, the torque is .

6.      D     

The seesaw is in equilibrium when the net torque acting on it is zero. Since both objects are exerting a force 

perpendicular to the seesaw, the torque is equal to . The 3 kg mass exerts a torque of 

N · m in the clockwise direction. The second mass exerts a torque in the counterclockwise 

direction. If we know this torque also has a magnitude of 30g N · m, we can solve for m:

7.      E     

The rotational equivalent of Newton’s Second Law states that . We are told that N · 

m and I = 1/2
 MR2, so now we can solve for :

8.      B     
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At the top of the incline, the disk has no kinetic energy, and a gravitational potential energy of mgh. At the 

bottom of the incline, all this gravitational potential energy has been converted into kinetic energy. However, 

in rolling down the hill, only some of this potential energy becomes translational kinetic energy, and the rest 

becomes rotational kinetic energy. Translational kinetic energy is given by 1 /2 mv
2 and rotational kinetic 

energy is given by 1 /2
 I 2. We can express in terms of v and R with the equation = v/R, and in the 

question we were told that I = 1/2 mR
2. We now have all the information we need to solve for v:

9.      B     

This is a conservation of momentum question. The angular momentum of the rock as it is launched is equal 

to its momentum after it’s been launched. The momentum of the rock-basket system as it swings around is:

The rock will have the same momentum as it leaves the basket. The angular momentum of a single particle 

is given by the formula L = mvr. Since L is conserved, we can manipulate this formula and solve for v:

Be sure to remember that the initial mass of the basket-rock system is 250 kg, while the final mass of the 

rock is only 200 kg.

10.      C     

Angular momentum, , is a conserved quantity, meaning that the greater I is, the less will be, 

and vice versa. In order to maximize angular velocity, then, it is necessary to minimize the moment of 

inertia. Since the moment of inertia is greater the farther the mass of a body is from its axis of rotation, we 

can maximize angular velocity by concentrating all the mass near the axis of rotation.
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Circular Motion and Gravitation

NEWTON’S FIRST LAW TELLS US THAT objects will move in a straight line at a constant 

speed unless a net force is acting upon them. That rule would suggest that objects moving in a 

circle—whether they’re tetherballs or planets—are under the constant influence of a changing 

force,  since their  trajectory is  not  in  a straight  line.  We will  begin by looking at  the general 

features of circular motion and then move on to examine gravity, one of the principal sources of 

circular motion.

Uniform Circular Motion

Uniform circular motion occurs when a body moves in a circular path with constant speed. For 

example, say you swing a tethered ball overhead in a circle: 

If we leave aside gravity for the moment, the only force acting on the ball is the force of tension, 

T, of the string. This force is always directed radially inward along the string, toward your hand. In 

other words, the force acting on a tetherball traveling in a circular path is always directed toward 

the center of that circle.

Note that although the direction of the ball’s velocity changes, the ball’s velocity is constant in 

magnitude and is always tangent to the circle.

Centripetal Acceleration
From kinematics, we know that acceleration is the rate of change of the velocity vector with time. 

If we consider two points very close together on the ball’s trajectory and calculate  , we find 

that the ball’s acceleration points inward along the radius of the circle. 

The acceleration of a body experiencing uniform circular motion is always directed toward the 

center of the circle, so we call that acceleration centripetal acceleration, . Centripetal comes 
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from a Latin word meaning “center-seeking.” We define the centripetal acceleration of a body 

moving in a circle as:

where v is the body’s velocity, and r is the radius of the circle. The body’s centripetal acceleration 

is constant in magnitude but changes in direction. Note that even though the direction of the 

centripetal acceleration vector is changing, the vector always points toward the center of the circle.

How This Knowledge Will Be Tested
Most  of  us  are  accustomed  to  think  of  “change”  as  a  change  in  magnitude,  so  it  may  be 

counterintuitive to think of the acceleration vector as “changing” when its magnitude remains 

constant. You’ll frequently find questions on SAT II Physics that will try to catch you sleeping on 

the nature of centripetal acceleration. These questions are generally qualitative, so if you bear in 

mind that  the acceleration vector  is constant in magnitude,  has a  direction that  always points 

toward the center of the circle, and is always perpendicular to the velocity vector, you should have 

no problem at all. 

Centripetal Force
Wherever you find acceleration, you will also find force. For a body to experience centripetal 

acceleration, a centripetal force must be applied to it. The vector for this force is similar to the 

acceleration vector: it is of constant magnitude, and always points radially inward to the center of 

the circle, perpendicular to the velocity vector. 

We can  use  Newton’s  Second  Law  and  the  equation  for  centripetal  acceleration  to  write  an 

equation for the centripetal force that maintains an object’s circular motion:

EXAMPLE

A ball with a mass of 2 kg is swung in a circular path on a massless rope of length 0.5 m. If the ball’s  
speed is 1 m/s, what is the tension in the rope? 

The tension in the rope is what provides the centripetal force, so we just need to calculate the 

centripetal force using the equation above:
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Objects Released from Circular Motion
One concept that is tested frequently on SAT II Physics is the trajectory of a circling body when 

the force providing centripetal acceleration suddenly vanishes. For example, imagine swinging a 

ball  in  a  circle  overhead  and then  letting  it  go.  As soon as  you let  go,  there  is  no  longer  a 

centripetal force acting on the ball. Recall Newton’s First Law: when no net force is acting on an 

object, it will move with a constant velocity. When you let go of the ball, it will travel in a straight 

line with the velocity it had when you let go of it.

EXAMPLE

A student is standing on a merry-go-round that is rotating counterclockwise, as illustrated above. The 
student is given a ball and told to release it in such a way that it knocks over the wicket at the top of 
the diagram. At what point should the student release the ball?

When the student releases the ball, it will travel in a straight line, tangent to the circle. In order to 

hit the wicket, then, the student should release the ball at point B.
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Newton’s Law of Universal Gravitation

Newton’s Law of Universal Gravitation is a fundamental physical law. We experience its effects 

everywhere on this planet, and it is the prime mover in the vast world of astronomy. It can also be 

expressed in a relatively simple mathematical formula on which SAT II Physics is almost certain 

to test you.

Gravitational Force
In  1687,  Isaac Newton published his  Law of  Gravitation in  Philosophiae Naturalis  Principia 

Mathematica. Newton proposed that every body in the universe is attracted to every other body 

with  a  force  that  is  directly  proportional  to  the  product  of  the  bodies’ masses  and  inversely 

proportional  to  the  square  of  the  bodies’ separation.  In  terms  of  mathematical  relationships, 

Newton’s Law of Gravitation states that the force of gravity, , between two particles of mass 

and has a magnitude of:

where r is the distance between the center of the two masses and G is the gravitational constant. 

The value of G was determined experimentally by Henry Cavendish in 1798:

The force of gravity is a vector quantity. Particle attracts particle with a force that is 

directed toward , as illustrated in the figure below. Similarly, particle attracts particle 

with a force that is directed toward . 

Note that the gravitational force, , acting on particle is equal and opposite to the 

gravitational force acting on particle , – . This is a consequence of Newton’s Third Law.

Let’s consider two examples to give you a more intuitive feel for the strength of the gravitational 

force. The force of gravity between two oranges on opposite sides of a table is quite tiny, roughly 

10–13 N. On the other hand, the gravitational force between two galaxies separated by  106 light 

years is something in the neighborhood of 1027 N! 

Newton’s Law of Gravitation was an enormous achievement, precisely because it synthesized the 

laws that govern motion on Earth and in the heavens. Additionally, Newton’s work had a profound 

effect on philosophical thought. His research implied that the universe was a rational place that 
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could be described by universal, scientific laws. But this is knowledge for another course. If you 

are interested in learning more about it, make sure to take a class on the history of science in 

college.

Gravity on the Surface of Planets
Previously, we noted that the acceleration due to gravity on Earth is 9.8 m/s2 toward the center of 

the Earth. We can derive this result using Newton’s Law of Gravitation.

Consider the general case of a mass accelerating toward the center of a planet. Applying Newton’s 

Second Law, we find:

Note that this equation tells us that acceleration is directly proportional to the mass of the planet 

and inversely proportional to the square of the radius. The mass of the object under the influence 

of the planet’s gravitational pull doesn’t factor into the equation. This is now pretty common 

knowledge, but it still trips up students on SAT II Physics: all objects under the influence of 

gravity, regardless of mass, fall with the same acceleration.

Acceleration on the Surface of the Earth

To find the acceleration due to gravity on the surface of the Earth, we must substitute values for 

the gravitational constant, the mass of the Earth, and the radius of the Earth into the equation 

above:

Not coincidentally, this is the same number we’ve been using in all those kinematic equations.

Acceleration Beneath the Surface of the Earth

If you were to burrow deep into the bowels of the Earth, the acceleration due to gravity would be 

different.  This  difference  would  be  due  not  only  to  the  fact  that  the  value  of  r would  have 

decreased. It would also be due to the fact that not all of the Earth’s mass would be under you. The 

mass above your head wouldn’t draw you toward the center of the Earth—quite the opposite—and 

so the value of  would also decrease as you burrowed. It turns out that there is a linear 

relationship between the acceleration due to gravity and one’s distance from the Earth’s center 
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when you are beneath the surface of the Earth. Burrow halfway to the center of the Earth and the 

acceleration due to gravity will be 1/2 g. Burrow three-quarters of the way to the center of the Earth 

and the acceleration due to gravity will be 1 /4 g.

Orbits
The orbit of satellites—whether of artificial satellites or natural ones like moons and planets—is a 

common way in which SAT II Physics will test your knowledge of both uniform circular motion 

and gravitation in a single question.

How Do Orbits Work?

Imagine a baseball pitcher with a very strong arm. If he just tosses the ball lightly, it will fall to the 

ground right in front of him. If he pitches the ball at 100 miles per hour in a line horizontal with 

the Earth, it will fly somewhere in the neighborhood of 80 feet before it hits the ground. By the 

same token, if he were to pitch the ball at  100,000 miles per hour in a line horizontal with the 

Earth,  it  will  fly somewhere in the neighborhood of  16 miles  before it  hits the ground. Now 

remember: the Earth is round, so if the ball flies far enough, the ball’s downward trajectory will 

simply follow the curvature of the Earth until it makes a full circle of the Earth and hits the pitcher 

in the back of the head. A satellite in orbit is an object in free fall  moving at a high enough 

velocity that it falls around the Earth rather than back down to the Earth.

Gravitational Force and Velocity of an Orbiting Satellite

Let’s take the example of a satellite of mass orbiting the Earth with a velocity v. The satellite is 

a distance R from the center of the Earth, and the Earth has a mass of .
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The centripetal force acting on the satellite is the gravitational force of the Earth. Equating the 

formulas for gravitational force and centripetal force we can solve for v:

As you can see, for a planet of a given mass, each radius of orbit corresponds with a certain 

velocity. That is, any object orbiting at radius R must be orbiting with a velocity of . If 

the satellite’s speed is too slow, then the satellite will fall back down to Earth. If the satellite’s 

speed is too fast, then the satellite will fly out into space. 

Gravitational Potential Energy

In Chapter 4, we learned that the potential energy of a system is equal to the amount of work that 

must  be  done  to  arrange  the  system  in  that  particular  configuration.  We  also  saw  that 

gravitational potential energy depends on how high an object is off the ground: the higher an 

object is, the more work needs to be done to get it there.

Gravitational potential energy is not an absolute measure. It tells us the amount of work needed to 

move an object from some arbitrarily chosen reference point to the position it is presently in. For 

instance, when dealing with bodies near the surface of the Earth, we choose the ground as our 

reference point, because it makes our calculations easier. If the ground is h = 0, then for a height h 

above the ground an object has a potential energy of mgh.

Gravitational Potential in Outer Space
Off  the  surface  of  the  Earth,  there’s  no  obvious  reference  point  from  which  to  measure 

gravitational potential energy. Conventionally, we say that an object that is an infinite distance 

away from the Earth has zero gravitational potential energy with respect to the Earth. Because a 

negative amount of work is done to bring an object closer to the Earth, gravitational potential 

energy is always a negative number when using this reference point.

The gravitational potential energy of two masses, and , separated by a distance r is:
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EXAMPLE

A satellite of mass is launched from the surface of the Earth into an orbit of radius , where 
is the radius of the Earth. How much work is done to get it into orbit?

The  work  done getting  the  satellite  from one  place  to  another  is  equal  to  the  change  in  the 

satellite’s potential energy. If its potential energy on the surface of the Earth is and its potential 

energy when it is in orbit is , then the amount of work done is:

Energy of an Orbiting Satellite

Suppose a satellite of mass  is in orbit around the Earth at a radius  R. We know the kinetic 

energy of the satellite is KE = 1/2 mv2. We also know that we can express centripetal force, , as 

= mv2/R. Accordingly, we can substitute this equation into the equation for kinetic energy and 

get:

Because is equal to the gravitational force, we can substitute Newton’s Law of Universal 

Gravitation in for :

We know that the potential energy of the satellite is , so the total energy of the 

satellite is the sum, E = KE + U:

Weightlessness

People rarely get to experience firsthand the phenomenon of weightlessness, but that doesn’t keep 
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SAT II Physics from testing you on it. There is a popular misconception that astronauts in satellites 

experience weightlessness because they are beyond the reach of the Earth’s gravitational pull. If 

you already know this isn’t the case, you’re in a good position to answer correctly anything SAT II 

Physics may ask about weightlessness.

In order to understand how weightlessness works, let’s look at the familiar experience of gaining 

and losing weight in an elevator. Suppose you bring a bathroom scale into the elevator with you to 

measure your weight.

When the elevator is at rest, the scale will read your usual weight, W = mg, where m is your mass. 

When the elevator rises with an acceleration of g, you will be distressed to read that your weight is 

now m(g + g) = 2mg. If the elevator cable is cut so that the elevator falls freely with an 

acceleration of –g, then your weight will be m(g – g) = 0. 

While in free fall in the elevator, if you were to take a pen out of your pocket and “drop” it, it 

would just hover in the air next to you. You, the pen, and the elevator are all falling at the same 

rate, so you are all motionless relative to one another. When objects are in free fall, we say that 

they experience weightlessness. You’ve probably seen images of astronauts floating about in space 

shuttles. This is not because they are free from the Earth’s gravitational pull. Rather, their space 

shuttle is in orbit about the Earth, meaning that it is in a perpetual free fall. Because they are in 

free fall, the astronauts, like you in your falling elevator, experience weightlessness.

Weightless environments provide an interesting context for testing Newton’s Laws. Newton’s First 

Law tells us that objects maintain a constant velocity in the absence of a net force, but we’re so 

used to being in an environment with gravity and friction that we never really see this law working 

to its full effect. Astronauts, on the other hand, have ample opportunity to play around with the 

First Law. For example, say that a weightless astronaut is eating lunch as he orbits the Earth in the 

space station. If the astronaut releases his grasp on a tasty dehydrated strawberry, then the berry, 

like your pen, floats in midair exactly where it was “dropped.” The force of gravity exerted by the 

Earth on the strawberry causes the strawberry to move in the same path as the spaceship. There is 

no relative motion between the astronaut and the berry unless the astronaut, or something else in 

the spaceship, exerts a net force on the berry. 
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Kepler’s Laws

After  poring  over  the  astronomical  observations  of  his  mentor  Tycho  Brahe  (1546–1601), 

Johannes Kepler (1571–1630) determined three laws of planetary motion. These laws are of great 

significance,  because  they  formed  the  background  to  Newton’s  thinking  about  planetary 

interaction and the attraction between masses. In fact, Newton later showed that Kepler’s Laws 

could be derived mathematically from his own Law of Universal Gravitation and laws of motion, 

providing evidence in favor of Newton’s new theories. Another point in favor of their significance 

is that any one of them may appear on SAT II Physics.

Kepler’s First Law states that the path of each planet around the sun is an ellipse with the sun at 

one focus. 

Kepler’s Second Law relates a planet’s speed to its distance from the sun. Because the planets’ 

orbits are elliptical, the distance from the sun varies. The Second Law states that if a line is drawn 

from the sun to the orbiting planet, then the area swept out by this line in a given time interval is 

constant. This means that when the planet is farthest from the sun it moves much more slowly than 

when it is closest to the sun. 

It is important to remember that although Kepler formulated this law in reference to planets 

moving around the sun, it also holds true for astronomical objects, like comets, that also travel in 

elliptical orbits around the sun. 

Kepler’s Third Law states that given the period, T, and semimajor axis, a, of a planet’s elliptical 

orbit, the ratio  T 2/a3 is the same for every planet. The semimajor axis is the longer one, along 

which the two foci are located.

EXAMPLE
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Every 76 years, Halley’s comet passes quite close by the Earth. At the most distant point in its orbit, it 
is much farther from the sun even than Pluto. Is the comet moving faster when it is closer to Earth or 
closer to Pluto?

According to Kepler’s Second Law, objects that are closer to the sun orbit faster than objects that 

are far away. Therefore, Halley’s comet must be traveling much faster when it is near the Earth 

than when it is off near Pluto.

Key Formulas
Centripetal 

Acceleration

Centripetal 

Force

Newton’s 

Law of 

Universal 

Gravitation

Acceleration 

Due to 

Gravity at 

the Surface 
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Velocity of a 

Satellite in 

Orbit

Gravitationa

l Potential 

Energy

Kinetic 
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Practice Questions

Questions  1–3  refer  to  a  ball  of  mass  m on  a  string  of  length  R,  swinging  around  in 
circular motion, with instantaneous velocity v and centripetal acceleration a.

1. . What is the centripetal acceleration of the ball if the length of the string is doubled?
(A) a/4
(B) a/2
(C) a

(D) 2a

(E) 4a

2. . What is the centripetal acceleration of the ball if the instantaneous velocity of the ball is doubled?
(A) a/4 
(B) a/2 
(C) a

(D) 2a

(E) 4a

3. . What is the centripetal acceleration of the ball if its mass is doubled?
(A) a/4
(B) a/2
(C) a

(D) 2a

(E) 4a

4. . A bullet of mass m traveling at velocity v strikes a block of mass 2m that is attached to a rod of 
length R. The bullet collides with the block at a right angle and gets stuck in the block. The rod is 
free to rotate. What is the centripetal acceleration of the block after the collision? 
(A) v2/R
(B) (1/2)v2/R
(C) (1/3)v2/R
(D) (1/4)v2/R
(E) (1/9)v2/R
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5. . A  car  wheel  drives  over  a  pebble,  which  then sticks  to  the wheel  momentarily  as  the wheel 
displaces it. What is the direction of the initial acceleration of the pebble? 
(A)

(B)
(C)

(D)

(E)

6. .
If we consider the gravitational force  F between two objects of masses  and  respectively, 
separated by a distance R, and we double the distance between them, what is the new magnitude 
of the gravitational force between them?
(A) F/4
(B) F/2
(C) F

(D) 2F

(E) 4F

7. . If the Earth were compressed in such a way that its mass remained the same, but the distance 
around the equator were just one-half what it is now, what would be the acceleration due to gravity 
at the surface of the Earth?
(A) g/4
(B) g/2
(C) g

(D) 2g

(E) 4g
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8. . A satellite orbits the Earth at a radius r and a velocity v. If the radius of its orbit is doubled, what is 
its velocity?
(A) v/2
(B)

v/
(C) v

(D)
v

(E) 2v 

9. .
An object is released from rest at a distance of from the center of the Earth, where is the 

radius of the Earth. In terms of the gravitational constant (G), the mass of the Earth (M), and , 
what is the velocity of the object when it hits the Earth?
(A)

(B)

(C)

(D)

(E)

10. . Two planets, A and B, orbit a star. Planet A moves in an elliptical orbit whose semimajor axis has 
length a. Planet B moves in an elliptical orbit whose semimajor axis has a length of 9a. If planet A 

orbits with a period T, what is the period of planet B’s orbit?
(A) 729T

(B) 27T

(C) 3T

(D) T/3

(E) T/27

Explanations

1.      B     

The equation for the centripetal acceleration is a = v2/r. That is, acceleration is inversely proportional to 

the radius of the circle. If the radius is doubled, then the acceleration is halved.

2.      E     

From the formula a = v2/r, we can see that centripetal acceleration is directly proportional to the square 

of the instantaneous velocity. If the velocity is doubled, then the centripetal acceleration is multiplied by a 

factor of 4.
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3.      C     

The formula for centripetal acceleration is ac = v2/r. As you can see, mass has no influence on centripetal 

acceleration. If you got this question wrong, you were probably thinking of the formula for centripetal force: 

F = mv2/r. Much like the acceleration due to gravity, centripetal acceleration is independent of the mass of 

the accelerating object.

4.      E     

The centripetal acceleration of the block is given by the equation a = 2/R, where is the velocity of the 

bullet-block system after the collision. We can calculate the value for by applying the law of conservation 

of linear momentum. The momentum of the bullet before it strikes the block is p = mv. After it strikes the 

block, the bullet-block system has a momentum of . Setting these two equations equal to one 

another, we find:

If we substitute into the equation , we find:

5.      C     

The rotating wheel exerts a centripetal force on the pebble. That means that, initially, the pebble is drawn 

directly upward toward the center of the wheel.

6.      A     

Newton’s Law of Universal Gravitation tells us that the gravitational force between two objects is directly 

proportional to the masses of those two objects, and inversely proportional to the square of the distance 

between them. If that distance is doubled, then the gravitational force is divided by four.

7.      E     
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Circumference and radius are related by the formula C = 2πr, so if the circumference of the earth were 

halved, so would the radius. The acceleration due to gravity at the surface of the earth is given by the 

formula:

where M is the mass of the earth. This is just a different version Newton’s Law of Universal Gravitation, 

where both sides of the equation are divided by m, the mass of the falling object. From this formula, we can 

see that a is inversely proportional to r2. If the value of a is normally g, the value of a when r is halved 

must be 4g.

8.      B     

To get a formula that relates orbital velocity and orbital radius, we need to equate the formulas for 

gravitational force and centripetal force, and then solve for v:

From this formula, we can see that velocity is inversely proportional to the square root of r. If r is doubled, 

v
 is multiplied by .

9.      A     

We can apply the law of conservation of energy to calculate that the object’s change in potential energy is 

equal to its change in kinetic energy. The potential energy of an object of mass 
m

 at a distance from a 

planet of mass M is U = –GMm/r. The change in potential energy for the object is:

This change in potential energy represents the object’s total kinetic energy, KE = 1
 /2 mv

2, when it hits 

the Earth. Equating change in potential energy and total kinetic energy, we can solve for v:
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10.      B     

Kepler’s Third Law tells us that T2
/a3 is a constant for every planet in a system. If we let xT be the value 

for the period of planet B’s orbit, then we can solve for x using a bit of algebra:

Thermal Physics

THERMAL PHYSICS IS ESSENTIALLY THE study of heat,  temperature, and heat transfer. 

As we shall see—particularly when we look at the  Second Law of Thermodynamics—these 

concepts  have a  far  broader range of  application than you may at  first  imagine.  All  of  these 

concepts are closely related to  thermal energy,  which is one of the most important forms of 

energy. In almost every energy transformation, some thermal energy is produced in the form of 

heat. To take an example that by now should be familiar, friction produces heat. Rub your hands 

briskly together and you’ll feel heat produced by friction.

When you slide a book along a table, the book will not remain in motion, as Newton’s First Law 

would lead us to expect, because friction between the book and the table causes the book to slow 

down and stop. As the velocity of the book decreases, so does its kinetic energy, but this decrease 

is not a startling violation of the law of conservation of energy. Rather, the kinetic energy of the 

book is  slowly  transformed into  thermal  energy. Because  friction acts  over  a  relatively large 

distance, neither the table nor the book will be noticeably warmer. However, if you were somehow 

able to measure the heat produced through friction, you would find that the total heat produced in 

bringing the book to a stop is equal to the book’s initial kinetic energy.

Technically  speaking,  thermal  energy is  the  energy  associated with the  random vibration and 

movement of molecules. All matter consists of trillions of trillions of tiny molecules, none of 

which are entirely still. The degree to which they move determines the amount of thermal energy 

in an object.

While thermal energy comes into play in a wide range of phenomena, SAT II Physics will focus 

primarily on the sorts of things you might associate with words like heat and temperature. We’ll 
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learn how heat is transferred from one body to another, how temperature and heat are related, and 

how these concepts affect solids, liquids, gases, and the phase changes between the three. 

Heat and Temperature

In everyday speech, heat and temperature go hand in hand: the hotter something is, the greater its 

temperature. However, there is a subtle difference in the way we use the two words in everyday 

speech, and this subtle difference becomes crucial when studying physics. 

Temperature is a property of a material, and thus depends on the material, whereas heat is a form 

of energy existing on its own. The difference between heat and temperature is analogous to the 

difference between money and wealth. For example, $200 is an amount of money: regardless of 

who owns it, $200 is $200. With regard to wealth, though, the significance of $200 varies from 

person to person. If you are ten and carrying $200 in your wallet, your friends might say you are 

wealthy or ask to borrow some money. However, if you are thirty-five and carrying $200 in your 

wallet, your friends will probably not take that as a sign of great wealth, though they may still ask 

to borrow your money.

Temperature
While  temperature  is  related  to  thermal  energy,  there  is  no  absolute  correlation  between  the 

amount  of  thermal  energy (heat)  of  an  object  and its  temperature.  Temperature  measures  the 

concentration of thermal energy in an object in much the same way that density measures the 

concentration of matter in an object. As a result, a large object will have a much lower temperature 

than a small object with the same amount of thermal energy. As we shall see shortly, different 

materials respond to changes in thermal energy with more or less dramatic changes in temperature. 

Degrees Celsius

In the United States, temperature is measured in degrees Fahrenheit (ºF). However, Fahrenheit is 

not a metric unit, so it will not show up on SAT II Physics. Physicists and non-Americans usually 

talk about temperature in terms of degrees Celsius, a.k.a. centigrade (ºC). Water freezes at exactly 

0ºC and boils at  100ºC. This is not a remarkable coincidence—it is the way the Celsius scale is 

defined. 

SAT II Physics won’t ask you to convert between Fahrenheit and Celsius, but if you have a hard 

time thinking in terms of degrees Celsius, it  may help to know how to switch back and forth 

between the two. The freezing point of water is  0ºC and  32ºF. A change in temperature of nine 

degrees Fahrenheit corresponds to a change of five degrees Celsius, so that, for instance, 41ºF is 

equivalent to 5ºC. In general, we can relate any temperature of yºF to any temperature of xºC with 

the following equation:

Kelvins

In many situations we are only interested in changes of temperature, so it doesn’t really matter 

where the freezing point of water is arbitrarily chosen to be. But in other cases, as we shall see 

when  we  study  gases,  we  will  want  to  do  things  like  “double  the  temperature,”  which  is 

meaningless if the zero point of the scale is arbitrary, as with the Celsius scale. 

The Kelvin scale (K) is a measure of absolute temperature, defined so that temperatures expressed 
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in Kelvins are always positive. Absolute zero, 0 K, which is equivalent to –273ºC, is the lowest 

theoretical temperature a material can have. Other than the placement of the zero point, the Kelvin 

and Celsius scales are the same, so water freezes at 273 K and boils at 373 K.

Definition of Temperature

The temperature of a material is a measure of the average kinetic energy of the molecules that 

make up that material. Absolute zero is defined as the temperature at which the molecules have 

zero kinetic energy, which is why it is impossible for anything to be colder.

Solids are rigid because their molecules do not have enough kinetic energy to go anywhere—they 

just vibrate in place. The molecules in a liquid have enough energy to move around one another—

which is why liquids flow—but not enough to escape each other. In a gas, the molecules have so 

much kinetic energy that they disperse and the gas expands to fill its container.

Heat
Heat is a measure of how much thermal energy is transmitted from one body to another. We 

cannot say a body “has” a certain amount of heat any more than we can say a body “has” a certain 

amount of work. While both work and heat can be measured in terms of joules, they are not 

measures of energy but  rather  of energy transfer. A hot  water  bottle has a certain  amount of 

thermal energy; when you cuddle up with a hot water bottle, it transmits a certain amount of heat 

to your body.

Calories

Like work, heat can be measured in terms of joules, but it is frequently measured in terms of 

calories (cal). Unlike joules, calories relate heat to changes in temperature, making them a more 

convenient unit of measurement for the kinds of thermal physics problems you will encounter on 

SAT II Physics. Be forewarned, however, that a question on thermal physics on SAT II Physics 

may be expressed either in terms of calories or joules.

A calorie is defined as the amount of heat needed to raise the temperature of one gram of water by 

one degree Celsius. One calorie is equivalent to 4.19 J.

You’re probably most familiar with the word calorie in the context of a food’s nutritional content. 

However, food calories are not quite the same as what we’re discussing here: they are actually 

Calories, with a capital “C,” where 1 Calorie = 1000 calories. Also, these Calories are not a 

measure of thermal energy, but rather a measure of the energy stored in the chemical bonds of 

food. 

Specific Heat
Though heat  and temperature are  not  the same thing,  there is  a  correlation between the  two, 

captured in a quantity called specific heat, c. Specific heat measures how much heat is required to 

raise the temperature of a certain mass of a given substance. Specific heat is measured in units of 

J/kg · ºC or cal/g · ºC. Every substance has a different specific heat, but specific heat is a constant 

for that substance.

For instance, the specific heat of water, , is J/kg · ºC or 1 cal/g · ºC. That means it 

takes joules of heat to raise one kilogram of water by one degree Celsius. Substances 

that are easily heated, like copper, have a low specific heat, while substances that are difficult to 
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heat, like rubber, have a high specific heat.

Specific heat allows us to express the relationship between heat and temperature in a mathematical 

formula:

where Q is the heat transferred to a material, m is the mass of the material, c is the specific heat of 

the material, and is the change in temperature.

EXAMPLE

4190 J  of  heat  are added to 0.5 kg of  water with an initial  temperature of  12ÂºC.  What is  the 
temperature of the water after it has been heated?

By rearranging the equation above, we can solve for :

The temperature goes up by 2 Cº, so if the initial temperature was 12ºC, then the final temperature 

is 14ºC. Note that when we talk about an absolute temperature, we write ºC, but when we talk 

about a change in temperature, we write Cº.

Thermal Equilibrium
Put a hot mug of cocoa in your hand, and your hand will get warmer while the mug gets cooler. 

You may have noticed that the reverse never happens: you can’t make your hand colder and the 

mug hotter by putting your hand against the mug. What you have noticed is a general truth about 

the world: heat flows spontaneously from a hotter object to a colder object,  but never from a 

colder object to a hotter object. This is one way of stating the Second Law of Thermodynamics, to 

which we will return later in this chapter.

Whenever two objects of different temperatures are placed in contact,  heat will flow from the 

hotter of the two objects to the colder until they both have the same temperature. When they reach 

this state, we say they are in thermal equilibrium.

Because energy is conserved, the heat that flows out of the hotter object will be equal to the heat 

that flows into the colder object. With this in mind, it is possible to calculate the temperature two 

objects will reach when they arrive at thermal equilibrium.

EXAMPLE

3 kg of gold at a temperature of 20ÂºC is placed into contact with 1 kg of copper at a temperature of 
80ÂºC. The specific heat of gold is 130 J/kg Â· ÂºC and the specific heat of copper is 390 J/kg Â· ÂºC. 
At what temperature do the two substances reach thermal equilibrium?

The  heat  gained  by  the  gold,  is  equal  to  the  heat  lost  by  the  copper, 

. We can set the heat gained by the gold to be equal to the heat lost by the 
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copper, bearing in mind that the final temperature of the gold must equal the final temperature of 

the copper:

The equality between and tells us that the temperature change of the gold is equal 

to the temperature change of the copper. If the gold heats up by 30 Cº and the copper cools down 

by 30 Cº, then the two substances will reach thermal equilibrium at 50ºC.

Phase Changes
As you know, if you heat a block of ice, it won’t simply get warmer. It will also melt and become 

liquid.  If  you heat  it  even further,  it  will  boil  and become a gas.  When a  substance changes 

between being a solid, liquid, or gas, we say it has undergone a phase change.

Melting Point and Boiling Point

If a solid is heated through its melting point, it will melt and turn to liquid. Some substances—for 

example, dry ice (solid carbon dioxide)—cannot exist as a liquid at certain pressures and will 

sublimate instead, turning directly into gas. If a liquid is heated through its boiling point, it will 

vaporize and turn to gas. If a liquid is cooled through its melting point, it will freeze. If a gas is 

cooled through its boiling point, it will condense into a liquid, or sometimes deposit into a solid, 

as in the case of carbon dioxide. These phase changes are summarized in the figure below.

A substance requires a certain amount of heat to undergo a phase change. If you were to apply 

steady heat to a block of ice, its temperature would rise steadily until it reached 0ºC. Then the 

temperature would remain constant as the block of ice slowly melted into water. Only when all the 

ice had become water would the temperature continue to rise.

Latent Heat of Transformation
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Just as specific heat tells us how much heat it takes to increase the temperature of a substance, the 

latent heat  of  transformation,  q,  tells  us  how much heat  it  takes  to  change the phase of  a 

substance. For instance, the latent heat of fusion of water—that is, the latent heat gained or lost in 

transforming a solid into a liquid or a liquid into a solid—is J/kg. That means that you 

must add J to change one kilogram of ice into water, and remove the same amount of 

heat to change one kilogram of water into ice. Throughout this phase change, the temperature will 

remain constant at 0ºC.

The latent heat of vaporization, which tells us how much heat is gained or lost in transforming a 

liquid into a gas or a gas into a liquid, is a different value from the latent heat of fusion. For 

instance, the latent heat of vaporization for water is  J/kg, meaning that you must add 

J to change one kilogram of water into steam, or remove the same amount of heat to 

change one kilogram of steam into water. Throughout this phase change, the temperature will 

remain constant at 100ºC.

To sublimate a solid directly into a gas, you need an amount of heat equal to the sum of the latent 

heat of fusion and the latent heat of vaporization of that substance.

EXAMPLE

How much heat is needed to transform a 1 kg block of ice at –5ÂºC to a puddle of water at 10ÂºC?

First, we need to know how much heat it takes to raise the temperature of the ice to 0ºC:

Next, we need to know how much heat it takes to melt the ice into water:

Last, we need to know how much heat it takes to warm the water up to 10ºC.

Now we just add the three figures together to get our answer:

Note that far more heat was needed to melt the ice into liquid than was needed to increase the 

temperature.

Thermal Expansion
You may have noticed in everyday life that substances can often expand or contract with a change 

in temperature even if they don’t change phase. If you play a brass or metal woodwind instrument, 

you have probably noticed that this size change creates difficulties when you’re trying to tune 
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your instrument—the length of the horn, and thus its pitch, varies with the room temperature. 

Household thermometers also work according to this principle: mercury, a liquid metal, expands 

when it is heated, and therefore takes up more space and rise in a thermometer.

Any given substance will have a coefficient of linear expansion, , and a coefficient of volume 

expansion, . We can use these coefficients to determine the change in a substance’s length, L, or 

volume, V, given a certain change in temperature.

EXAMPLE

A bimetallic strip of steel and brass of length 10 cm, initially at 15ÂºC, is heated to 45ÂºC. What is the 
difference in length between the two substances after they have been heated? The coefficient of linear 

expansion for steel is 1.2 10–5/CÂº, and the coefficient of linear expansion for brass is 1.9 10–

5/CÂº.

First, let’s see how much the steel expands:

Next, let’s see how much the brass expands:

The difference in length is m. Because the brass expands 

more than the steel, the bimetallic strip will bend a little to compensate for the extra length of the 

brass.

Thermostats work according to this principle:  when the temperature reaches a certain point,  a 

bimetallic strip inside the thermostat will bend away from an electric contact,  interrupting the 

signal calling for more heat to be sent into a room or building.

Methods of Heat Transfer
There are three different ways heat can be transferred from one substance to another or from one 

place to another. This material is most likely to come up on SAT II Physics as a question on what 

kind  of  heat  transfer  is  involved  in  a  certain  process.  You  need  only  have  a  qualitative 

understanding of the three different kinds of heat transfer.

Conduction
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Conduction is the transfer of heat by intermolecular collisions. For example, when you boil water 

on a stove, you only heat the bottom of the pot. The water molecules at the bottom transfer their 

kinetic energy to the molecules above them through collisions, and this process continues until all 

of the water is at thermal equilibrium. Conduction is the most common way of transferring heat 

between two solids or liquids, or within a single solid or liquid. Conduction is also a common way 

of transferring heat through gases.

Convection

While conduction involves molecules passing their kinetic energy to other molecules, convection 

involves the molecules themselves moving from one place to another. For example, a fan works 

by displacing hot air with cold air. Convection usually takes place with gases traveling from one 

place to another.

Radiation

Molecules can also transform heat into electromagnetic waves, so that heat is transferred not by 

molecules but by the waves themselves. A familiar example is the microwave oven, which sends 

microwave radiation into the food, energizing the molecules in the food without those molecules 

ever making contact with other, hotter molecules. Radiation takes place when the source of heat is 

some form of electromagnetic wave, such as a microwave or sunlight.

The Kinetic Theory of Gases & the Ideal Gas Law

We said earlier that temperature is a measure of the kinetic energy of the molecules in a material, 

but we didn’t elaborate on that remark. Because individual molecules are so small, and because 

there are so many molecules in most substances, it would be impossible to study their behavior 

individually.  However,  if  we  know  the  basic  rules  that  govern  the  behavior  of  individual 

molecules, we can make statistical calculations that tell us roughly how a collection of millions of 

molecules  would  behave.  This,  essentially,  is  what  thermal  physics  is:  the  study  of  the 

macroscopic effects of the microscopic molecules that make up the world of everyday things.

The kinetic theory of gases makes the transition between the microscopic world of molecules and 

the macroscopic world of quantities like temperature and pressure. It starts out with a few basic 

postulates  regarding  molecular  behavior,  and  infers  how  this  behavior  manifests  itself  on  a 

macroscopic level. One of the most important results of the kinetic theory is the derivation of the 

ideal gas law, which not only is very useful and important, it’s also almost certain to be tested on 

SAT II Physics.

The Kinetic Theory of Gases
We can summarize the kinetic theory of gases with four basic postulates:

1. Gases are made up of molecules: We can treat molecules as point masses that are perfect 

spheres. Molecules in a gas are very far apart, so that the space between each individual 

molecule is many orders of magnitude greater than the diameter of the molecule. 

2. Molecules are in constant random motion: There is no general pattern governing either 

the magnitude or direction of the velocity of the molecules in a gas. At any given time, 

molecules are moving in many different directions at many different speeds. 

3. The  movement  of  molecules  is  governed  by  Newton’s  Laws: In  accordance  with 

Newton’s First  Law, each molecule  moves in  a  straight  line at  a  steady velocity, not 
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interacting with any of the other molecules except in a collision. In a collision, molecules 

exert equal and opposite forces on one another. 

4. Molecular collisions are perfectly elastic: Molecules do not lose any kinetic energy 

when they collide with one another.

The kinetic theory projects a picture of gases as tiny balls that bounce off one another whenever 

they  come  into  contact.  This  is,  of  course,  only  an  approximation,  but  it  turns  out  to  be  a 

remarkably accurate approximation for how gases behave in the real world.

These assumptions allow us to build definitions of temperature and pressure that are based on the 

mass movement of molecules.

Temperature

The kinetic theory explains why temperature should be a measure of the average kinetic energy of 

molecules. According to the kinetic theory, any given molecule has a certain mass,  m; a certain 

velocity, v; and a kinetic energy of 1/ 2  mv2. As we said, molecules in any system move at a wide 

variety  of  different  velocities,  but  the  average of  these  velocities  reflects  the  total  amount  of 

energy in that system.

We know from experience that substances are solids at lower temperatures and liquids and gases at 

higher temperatures. This accords with our definition of temperature as average kinetic energy: 

since the molecules in gases and liquids have more freedom of movement, they have a higher 

average velocity.

Pressure

In physics, pressure, P, is the measure of the force exerted over a certain area. We generally say 

something exerts a lot of pressure on an object if it exerts a great amount of force on that object, 

and if that force is exerted over a small area. Mathematically:

Pressure is measured in units of pascals (Pa), where 1 Pa = 1 N/m2.

Pressure comes into play whenever force is exerted on a certain area, but it plays a particularly 

important role with regard to gases. The kinetic theory tells us that gas molecules obey Newton’s 

Laws: they travel with a constant velocity until they collide, exerting a force on the object with 

which they collide. If we imagine gas molecules in a closed container, the molecules will collide 

with the walls of the container with some frequency, each time exerting a small force on the walls 

of the container. The more frequently these molecules collide with the walls of the container, the 

greater the net force and hence the greater the pressure they exert on the walls of the container.

Balloons provide  an example of  how pressure works.  By forcing more  and more air  into an 

enclosed space, a great deal of pressure builds up inside the balloon. In the meantime, the rubber 

walls of the balloon stretch out more and more, becoming increasingly weak. The balloon will pop 

when the force of pressure exerted on the rubber walls is greater than the walls can withstand.

The Ideal Gas Law
The ideal gas law relates temperature, volume, and pressure, so that we can calculate any one of 

these quantities in terms of the others. This law stands in relation to gases in the same way that 

Newton’s Second Law stands in relation to dynamics: if you master this, you’ve mastered all the 

math you’re going to need to know. Ready for it? Here it is:
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Effectively, this equation tells us that temperature, T, is directly proportional to volume, V, and 

pressure, P. In metric units, volume is measured in m3, where 1m3 = 106cm2.

The n stands for the number of moles of gas molecules. One mole (mol) is just a big number—

 to be precise—that, conveniently, is the number of hydrogen atoms in a gram of 

hydrogen. Because we deal with a huge number of gas molecules at any given time, it is usually a 

lot easier to count them in moles rather than counting them individually.

The  R in the law is a constant of proportionality called the  universal gas constant, set at  8.31 

J/mol · K. This constant effectively relates temperature to kinetic energy. If we think of RT as the 

kinetic energy of an average molecule, then nRT is the total kinetic energy of all the gas molecules 

put together.

Deriving the Ideal Gas Law

Imagine a gas in a cylinder of base A, with one moving wall. The pressure of the gas exerts a force 

of F = PA on the moving wall of the cylinder. This force is sufficient to move the cylinder’s wall 

back a distance L, meaning that the volume of the cylinder increases by = AL. In terms of A, 

this equation reads A = /L. If we now substitute in /L for A in the equation F = PA, we get 

F = P /L, or

If you recall in the chapter on work, energy, and power, we defined work as force multiplied by 

displacement. By pushing the movable wall of the container a distance L by exerting a force F, the 

gas molecules have done an amount of work equal to FL, which in turn is equal to P .

The work done by a gas signifies a change in energy: as the gas increases in energy, it does a 

certain amount of work on the cylinder. If a change in the value of PV signifies a change in energy, 

then PV itself should signify the total energy of the gas. In other words, both PV and nRT are 

expressions for the total kinetic energy of the molecules of a gas.

Boyle’s Law and Charles’s Law
SAT II Physics will not expect you to plug a series of numbers into the ideal gas law equation. The 

value of n is usually constant, and the value of R is always constant. In most problems, either T, P, 

or V will also be held constant, so that you will only need to consider how changes in one of those 

values affects another of those values. There are a couple of simplifications of the ideal gas law 
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that deal with just these situations.

Boyle’s Law

Boyle’s Law deals with gases at a constant temperature. It tells us that an increase in pressure is 

accompanied by a decrease in volume, and vice versa: . Aerosol canisters contain 

compressed (i.e., low-volume) gases, which is why they are marked with high-pressure warning 

labels. When you spray a substance out of an aerosol container, the substance expands and the 

pressure upon it decreases.

Charles’s Law

Charles’s Law deals with gases at a constant pressure. In such cases, volume and temperature are 

directly proportional:  . This is how hot-air balloons work: the balloon expands 

when the air inside of it is heated.

Gases in a Closed Container

You may also encounter problems that deal with “gases in a closed container,” which is another 

way of saying that the volume remains constant. For such problems, pressure and temperature are 

directly proportional: . This relationship, however, apparently does not deserve a 

name.

EXAMPLE 1

A gas in a cylinder is kept at a constant temperature while a piston compresses it to half its original 
volume. What is the effect of this compression on the pressure the gas exerts on the walls of the 
cylinder?

Questions like this come up all the time on SAT II Physics. Answering it is a simple matter of 

applying Boyle’s Law, or remembering that pressure and volume are inversely proportional in the 

ideal gas law. If volume is halved, pressure is doubled.

EXAMPLE 2

A gas in a closed container is heated from 0ÂºC to 273ÂºC. How does this affect the pressure of the 
gas on the walls of the container?

First, we have to remember that in the ideal gas law, temperature is measured in Kelvins. In those 

terms,  the  temperature  goes  from 273 K to  546 K;  in  other  words,  the  temperature  doubles. 

Because we are dealing with a closed container, we know the volume remains constant. Because 

pressure and temperature are directly proportional, we know that if the temperature is doubled, 

then the pressure is doubled as well. This is why it’s a really bad idea to heat an aerosol canister.

The Laws of Thermodynamics

Dynamics is  the study of why things move the way they do.  For instance,  in the chapter  on 

dynamics, we looked at Newton’s Laws to explain what compels bodies to accelerate, and how. 

The prefix thermo denotes heat, so thermodynamics is the study of what compels heat to move in 
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the way that it does. The Laws of Thermodynamics give us the whats and whys of heat flow.

The laws of thermodynamics are a bit strange. There are four of them, but they are ordered zero to 

three, and not one to four. They weren’t discovered in the order in which they’re numbered, and 

some—particularly  the  Second  Law—have  many  different  formulations,  which  seem to  have 

nothing to do with one another.

There  will  almost  certainly be  a  question  on the  Second Law on SAT II  Physics,  and  quite 

possibly something on the First Law. The Zeroth Law and Third Law are unlikely to come up, 

but we include them here for the sake of completion. Questions on the Laws of Thermodynamics 

will probably be qualitative: as long as you understand what these laws mean, you probably won’t 

have to do any calculating.

Zeroth Law
If system A is at thermal equilibrium with system B, and B is at thermal equilibrium with system 

C, then  A is at thermal equilibrium with C. This is more a matter of logic than of physics. Two 

systems are at thermal equilibrium if they have the same temperature. If  A and B have the same 

temperature, and B and C have the same temperature, then A and C have the same temperature. 

The significant consequence of the Zeroth Law is that, when a hotter object and a colder object are 

placed in contact with one another, heat will flow from the hotter object to the colder object until 

they are in thermal equilibrium.

First Law
Consider  an isolated system—that  is,  one  where  heat  and energy neither  enter  nor  leave  the 

system. Such a system is doing no work, but we associate with it a certain  internal energy,  U, 

which is related to the kinetic energy of the molecules in the system, and therefore to the system’s 

temperature. Internal energy is similar to potential energy in that it is a property of a system that is 

doing no work, but has the potential to do work.

The First Law tells us that the internal energy of a system increases if heat is added to the system 

or if work is done on the system and decreases if the system gives off heat or does work. We can 

express this law as an equation:

where U signifies internal energy, Q signifies heat, and W signifies work.

The First Law is just another way of stating the law of conservation of energy. Both heat and work 

are forms of energy, so any heat or work that goes into or out of a system must affect the internal 

energy of that system.

EXAMPLE
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Some heat is added to a gas container that is topped by a movable piston. The piston is weighed down 
with a 2 kg mass. The piston rises a distance of 0.2 m at a constant velocity. Throughout this process, 
the temperature of the gas in the container remains constant. How much heat was added to the 
container?

The key to answering this question is to note that the temperature of the container remains 

constant. That means that the internal energy of the system remains constant ( ), which 

means that, according to the First Law, . By pushing the piston upward, the system 

does a certain amount of work, , and this work must be equal to the amount of heat added to 

the system, .

The amount of work done by the system on the piston is the product of the force exerted on the 

piston and the distance the piston is moved. Since the piston moves at a constant velocity, we 

know that the net force acting on the piston is zero, and so the force the expanding gas exerts to 

push the piston upward must be equal and opposite to the force of gravity pushing the piston 

downward. If the piston is weighed down by a two-kilogram mass, we know that the force of 

gravity is:

Since the gas exerts a force that is equal and opposite to the force of gravity, we know that it 

exerts a force of 19.6 N upward. The piston travels a distance of 0.2 m, so the total work done on 

the piston is:

Since in the equation for the First Law of Thermodynamics is positive when work is done on 

the system and negative when work is done by the system, the value of is –3.92 J. Because 

, we can conclude that J, so 3.92 J of heat must have been added to the 

system to make the piston rise as it did.

Second Law
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There are a number of equivalent forms of the Second Law, each of which sounds quite different 

from the others. Questions about the Second Law on SAT II Physics will invariably be qualitative. 

They will usually ask that you identify a certain formulation of the Second Law as an expression 

of the Second Law. 

The Second Law in Terms of Heat Flow

Perhaps the most intuitive formulation of the Second Law is that heat flows spontaneously from a 

hotter object to a colder one, but not in the opposite direction. If you leave a hot dinner on a table 

at room temperature, it will slowly cool down, and if you leave a bowl of ice cream on a table at 

room temperature,  it  will  warm up and melt.  You may have  noticed  that  hot  dinners  do not 

spontaneously get hotter and ice cream does not spontaneously get colder when we leave them 

out. 

The Second Law in Terms of Heat Engines

One consequence of this law, which we will explore a bit more in the section on heat engines, is 

that no machine can work at 100% efficiency: all machines generate some heat, and some of that 

heat is always lost to the machine’s surroundings.

The Second Law in Terms of Entropy

The Second Law is most famous for its formulation in terms of entropy. The word entropy was 

coined in the 19th century as a technical term for talking about disorder. The same principle that 

tells us that heat spontaneously flows from hot to cold but not in the opposite direction also tells us 

that, in general, ordered systems are liable to fall into disorder, but disordered systems are not 

liable to order themselves spontaneously.

Imagine pouring a tablespoon of salt and then a tablespoon of pepper into a jar. At first, there will 

be two separate heaps: one of salt and one of pepper. But if you shake up the mixture, the grains of 

salt and pepper will mix together. No amount of shaking will then help you separate the mixture of 

grains back into two distinct heaps. The two separate heaps of salt and pepper constitute a more 

ordered system than the mixture of the two.

Next, suppose you drop the jar on the floor. The glass will break and the grains of salt and pepper 

will  scatter across the floor. You can wait patiently, but you’ll  find that, while the glass could 

shatter and the grains could scatter, no action as simple as dropping a jar will get the glass to fuse 

back together again or the salt and pepper to gather themselves up. Your system of salt and pepper 

in the jar is more ordered than the system of shattered glass and scattered condiments.

Entropy and Time

You may have noticed that Newton’s Laws and the laws of kinematics are time-invariant. That is, 

if you were to play a videotape of kinematic motion in reverse, it would still obey the laws of 

kinematics. Videotape a ball flying up in the air and watch it drop. Then play the tape backward: it 

goes up in the air and drops in just the same way.

By contrast, you’ll notice that the Second Law is not time-invariant: it tells us that, over time, the 

universe tends toward greater disorder. Physicists suggest that the Second Law is what gives time 

a direction. If all we had were Newton’s Laws, then there would be no difference between time 

going forward and time going backward. So we were a bit inaccurate when we said that entropy 

increases over time. We would be more accurate to say that time moves in the direction of entropy 

increase.

Third Law
It is impossible to cool a substance to absolute zero. This law is irrelevant as far as SAT II Physics 
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is concerned, but we have included it for the sake of completeness. 

Heat Engines

A heat engine is a machine that converts heat into work. Heat engines are important not only 

because they come up on SAT II Physics, but also because a large number of the machines we use

—most notably our cars—employ heat engines.

A heat engine operates by taking heat from a hot place, converting some of that heat into work, 

and dumping the rest in a cooler heat reservoir. For example, the engine of a car generates heat by 

combusting gasoline. Some of that heat drives pistons that make the car do work on the road, and 

some of that heat is dumped out the exhaust pipe.

Assume that a heat engine starts with a certain internal energy U, intakes heat from a heat 

source  at  temperature  ,  does  work  ,  and  exhausts  heat  into  a  the  cooler  heat 

reservoir with temperature . With a typical heat engine, we only want to use the heat intake, 

not the internal energy of the engine, to do work, so . The First Law of Thermodynamics 

tells us:

To determine how effectively an engine turns heat into work, we define the efficiency, e, as the 

ratio of work done to heat input:

Because the engine is doing work, we know that > 0, so we can conclude that > . 

Both and are positive, so the efficiency is always between 0 and 1:

Efficiency is usually expressed as a percentage rather than in decimal form. That the efficiency of 

a heat engine can never be 100% is a consequence of the Second Law of Thermodynamics. If 

there were a 100% efficient machine, it would be possible to create perpetual motion: a machine 

could do work upon itself without ever slowing down.

EXAMPLE

80 J of heat are injected into a heat engine, causing it to do work. The engine then exhausts 20 J of 
heat into a cool reservoir. What is the efficiency of the engine?
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If we know our formulas, this problem is easy. The heat into the system is = 80 J, and the 

heat out of the system is = 20 J. The efficiency, then, is: 1 – 20  80 = 0.75 = 75%⁄ .

Key Formulas
Conversion 

between 

Fahrenheit and 

Celsius

Conversion 

between Celsius 

and Kelvin

Relationship 

between Heat 

and 

Temperature

Coefficient of 

Linear 

Expansion

Coefficient of 

Volume 

Expansion

Ideal Gas Law

Boyle’s Law

Charles’s Law

First Law of 

Thermodynami

cs

Efficiency of a 

Heat Engine
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Theoretical 

Limits on Heat 

Engine 

Efficiency

Practice Questions

1. . 1 kg of cold water at 5ÂºC is added to a container of 5 kg of hot water at 65Âº C. What is the final 
temperature of the water when it arrives at thermal equilibrium?
(A) 10ÂºC
(B) 15ÂºC
(C) 35ÂºC
(D) 55ÂºC
(E) 60ÂºC

2. . Which of the following properties must be known in order to calculate the amount of heat needed 
to melt 1.0 kg of ice at 0ÂºC?
  I.  The  specific  heat  of  water
 II.  The  latent  heat  of  fusion  for  water
III. The density of water
(A) I only
(B) I and II only
(C) I, II, and III
(D) II only
(E) I and III only

3. . Engineers design city sidewalks using blocks of asphalt separated by a small gap to prevent them 
from cracking. Which of the following laws best explains this practice?
(A) The Zeroth Law of Thermodynamics
(B) The First Law of Thermodynamics
(C) The Second Law of Thermodynamics
(D) The law of thermal expansion
(E) Conservation of charge

4. . Which of the following is an example of convection?
(A) The heat of the sun warming our planet
(B) The heat from an electric stove warming a frying pan
(C) Ice cubes cooling a drink
(D) A microwave oven cooking a meal
(E) An overhead fan cooling a room
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5. . An ideal gas is enclosed in a sealed container. Upon heating, which property of the gas does not 
change?
(A) Volume
(B) Pressure
(C) The average speed of the molecules
(D) The rate of collisions of the molecules with each other
(E) The rate of collisions of the molecules with the walls of the container

6. . A box contains two compartments of equal volume separated by a divider. The two compartments 
each contain a random sample of n moles of a certain gas, but the pressure in compartment A is 
twice the pressure in compartment B. Which of the following statements is true?
(A) The temperature in A is twice the temperature in B
(B) The temperature in B is twice the temperature in A
(C) The value of the ideal gas constant, R, in A is twice the value of R in B
(D) The temperature in A is four times as great as the temperature in B
(E) The gas in A is a heavier isotope than the gas in B

7. . An ideal gas is heated in a closed container at constant volume. Which of the following properties of 
the gas increases as the gas is heated?
(A) The atomic mass of the atoms in the molecules
(B) The number of molecules
(C) The density of the gas
(D) The pressure exerted by the molecules on the walls of the container
(E) The average space between the molecules

8. . 24 J of heat are added to a gas in a container, and then the gas does 6 J of work on the walls of the 
container. What is the change in internal energy for the gas?
(A) –30 J
(B) –18 J
(C) 4 J
(D) 18 J
(E) 30 J

9. . When water freezes, its molecules take on a more structured order. Why doesn’t this contradict the 
Second Law of Thermodynamics?
(A) Because the density of the water is decreasing
(B) Because the water is gaining entropy as it goes from liquid to solid state
(C) Because the water’s internal energy is decreasing
(D) Because the surroundings are losing entropy
(E) Because the surroundings are gaining entropy
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10. . A heat engine produces 100 J of heat, does 30 J of work, and emits 70 J into a cold reservoir. 
What is the efficiency of the heat engine?
(A) 100%
(B) 70%
(C) 42%
(D) 40%
(E) 30%

Explanations

1.      D     

The amount of heat lost by the hot water must equal the amount of heat gained by the cold water. Since all 

water has the same specific heat capacity, we can calculate the change in temperature of the cold water, 

, in terms of the change in temperature of the hot water, :

At thermal equilibrium, the hot water and the cold water will be of the same temperature. With this in mind, 

we can set up a formula to calculate the value of :

Since the hot water loses 10 Cº, we can determine that the final temperature of the mixture is 65ºC – 10 

Cº = 55ºC.

2.      D     

If a block of ice at 0ºC is heated, it will begin to melt. The temperature will remain constant until the ice is 

completely transformed into liquid. The amount of heat needed to melt a certain mass of ice is given by the 

latent heat of fusion for water. The specific heat of water is only relevant when the temperature of the ice or 

water is changing, and the density of the water is not relevant.

3.      D     
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Asphalt, like most materials, has a positive coefficient of linear expansion, meaning that it expands as 

temperatures rise in summer and shrinks as temperatures fall in winter. This effect is called the law of 

thermal expansion, D. The gaps in the sidewalk allow the blocks to expand without pushing against each 

other and cracking.

4.      E     

Convection is a form of heat transfer where a large number of molecules move from one place to another. An 

overhead fan works precisely by this method: it sends cooler air molecules down into a hot room, cooling the 

temperature of the room. The heat of the sun and the cooking action of a microwave are both forms of 

radiation, while the heat on a frying pan and the cooling action of ice cubes are both forms of conduction.

5.      A     

Since the gas is in a closed container, its volume remains constant, so the correct answer is A.

When the gas is heated, its temperature increases, meaning that the average speed of the gas molecules 

increases. An increase in temperature also means there are more collisions between molecules.

According to the ideal gas law, when volume is constant and temperature is increased, then pressure will 

also increase. Pressure is determined by the rate of collisions of the gas molecules with the walls of the 

container.

6.      A     

According to the ideal gas law, temperature is directly proportional to volume and pressure. Since the volume 

of the container is constant, that means that doubling the temperature will double the pressure.

R is a constant: it doesn’t vary under different circumstances, so C is wrong. Also, we are looking at a 

random sample of the gas, so there won’t be a heavier isotope in one or the other of the containers: E is also 

wrong.

7.      D     

The ideal gas law states that temperature is directly proportional to pressure and volume. Since the gas is in 

a closed container, the volume is fixed, so an increase in temperature leads to an increase in pressure. The 

correct answer is D.

The atomic mass and the number of molecules are fixed properties of the gas sample, and cannot change 

with heat. The density depends on the mass and the volume. The mass is also a fixed property of the gas 

sample, and the volume is being held constant, since we are dealing with a closed container. Therefore, the 

density must also remain constant. Because the number of molecules and the volume are constant, the 

average space between the molecules must remain constant.
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8.      D     

The First Law of Thermodynamics tells us that : the change in internal energy is equal to 

the change in heat plus the work done on the system. The value of is 24 J, since that much heat is 

added to the system, and the value of is –6 J, since the system does work rather than has work done 

on it. With this in mind, calculating is a simple matter of subtraction:

9.      E     

The Second Law of Thermodynamics tells us that the total amount of disorder, or entropy, in the universe is 

increasing. The entropy in a particular system can decrease, as with water molecules when they turn to ice, 

but only if the entropy in the surroundings of that system increases to an equal or greater extent. The 

Second Law of Thermodynamics holds, but only because the surroundings are gaining entropy, so the correct 

answer is E. Answer D refers to the key part of the answer, but gives the wrong information about the 

change in entropy of the surroundings.

Be careful not to fall for answer C. This is an explanation for why the water does not lose heat when it 

freezes: it is, in fact, losing internal energy. This is an instance of the First Law of Thermodynamics, which 

states that the change in a system’s internal energy is equal to the value of the heat transfer in the system 

minus the work done by the system.

10.      E     

The efficiency of a heat engine is defined as , where is the amount of heat 

output into the cold reservoir and is the amount of heat produced by the heat engine. Plugging the 

numbers in the question into this formula, we find that:

An efficiency of 0.3 is the same thing as 30%.

Electric Forces, Fields, and Potential

DEMOCRITUS, A GREEK PHILOSOPHER OF the 5th century B.C., was the first to propose 

that all things are made of indivisible particles called atoms. His hypothesis was only half right. 
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The things we call atoms today are in fact made up of three different kinds of particles: protons, 

neutrons,  and electrons.  Electrons  are  much smaller  than  the  other  two particles.  Under  the 

influence of the electronic force, electrons orbit the nucleus of the atom, which contains protons 

and neutrons. 

Protons and electrons both carry electric charge, which causes them to be attracted to one 

another. In most atoms, there are as many electrons as there are protons, and the opposite charges 

of these two kinds of particle balance out. However, it is possible to break electrons free from their 

orbits about the nucleus, causing an imbalance in charge. The movement of free electrons is the 

source of everything that we associate with electricity, a phenomenon whose power we have 

learned to harness over the past few hundred years to revolutionary effect.

Electric Charge

It is very difficult, if not impossible, to understand fully what electric charge,  q, is. For SAT II 

Physics, you need only remember the old phrase: opposites attract. Protons carry a positive charge 

and electrons carry a negative charge, so you can just remember these three simple rules:

• Two positive charges will repel one another. 

• Two negative charges will repel one another. 

• A positive charge and a negative charge will attract one another.

The amount of positive charge in a proton is equal to the amount of negative charge in an electron, 

so an atom with an equal number of protons and electrons is electrically neutral, since the positive 

and negative charges balance out. Our focus will be on those cases when electrons are liberated 

from their atoms so that the atom is left with a net positive charge and the electron carries a net 

negative charge somewhere else.

Conservation of Charge
The SI unit of charge is the coulomb (C). The smallest unit of charge, e—the charge carried by a 

proton or an electron—is approximately C. The conservation of charge—a hypothesis 

first put forward by Benjamin Franklin—tells us that charge can be neither created nor destroyed. 

The conservation of charge is much like the conservation of energy: the net charge in the universe 

is a constant, but charge, like energy, can be transferred from one place to another, so that a given 

system  experiences  a  net  gain  or  loss  of  charge.  Two  common  examples  of  charge  being 

transferred from one place to another are:

1. Rubbing a rubber rod with a piece of wool: The rod will pull the electrons off the wool, 

so that the rubber rod will end up with a net negative charge and the wool will have a net 

positive charge. You’ve probably experienced the “shocking” effects of rubbing rubber-

soled shoes on a wool carpet. 

2. Rubbing a glass rod with a piece of silk: The silk will pull the electrons off the glass, so 

that  the glass rod will end up with a net  positive charge and the silk will  have a net 
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negative charge.

Remember, net  charge is always conserved: the positive charge of the wool or glass  rod will 

balance out the negative charge of the rubber rod or silk.

The Electroscope
The  electroscope is a device commonly used—and sometimes included on SAT II Physics—to 

demonstrate how electric charge works. It consists of a metal bulb connected to a rod, which in 

turn is connected to two thin leaves of metal contained within an evacuated glass chamber. When a 

negatively charged object is brought close to the metal bulb, the electrons in the bulb are repelled 

by the charge in the object and move down the rod to the two thin leaves. As a result, the bulb at 

the top takes on a positive charge and the two leaves take on a negative charge. The two metal 

leaves then push apart, as they are both negatively charged, and repel one another.

When a positively charged object approaches the metal bulb, the exact opposite happens, but with 

the same result. Electrons are drawn up toward the bulb, so that the bulb takes on a negative 

charge and the metal leaves have a positive charge. Because both leaves still have the same 

charge, they will still push apart.

Electric Force

There is a certain force associated with electric charge, so when a net charge is produced, 

a net electric force is also produced. We find electric force at work in anything that runs 

on batteries or uses a plug, but that isn’t all. Almost all the forces we examine in this book 

come from electric charges. When two objects “touch” one another—be it in a car crash or 

a handshake—the atoms of the two objects never actually come into contact. Rather, the 

atoms in the two objects repel each other by means of an electric force.

Coulomb’s Law
Electric force is analogous to gravitational force: the attraction or repulsion between two 

particles is directly proportional to the charge of the two particles and inversely 

proportional to the square of the distance between them. This relation is expressed 

mathematically as Coulomb’s Law:

In this equation, and are the charges of the two particles, r is the distance between 

them, and k is a constant of proportionality. In a vacuum, this constant is Coulumb’s 

constant, , which is approximately N · m2 / C2. Coulomb’s constant is often 

expressed in terms of a more fundamental constant—the permittivity of free space, 

, which has a value of C2/ N · m2:
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If they come up on SAT II Physics, the values for and will be given to you, as will any 

other values for k when the electric force is acting in some other medium.

EXAMPLE

Two particles, one with charge +q and the other with charge –q, are a distance r apart. If the 
distance between the two particles is doubled and the charge of one of the particles is 
doubled, how does the electric force between them change?

According to Coulomb’s Law, the electric force between the two particles is initially

If we double one of the charges and double the value of r, we find:

Doubling the charge on one of the particles doubles the electric force, but doubling the 

distance between the particles divides the force by four, so in all, the electric force is half 

as strong as before.

Superposition
If you’ve got the hang of vectors, then you shouldn’t have too much trouble with the law 

of superposition of electric forces. The net force acting on a charged particle is the 

vector sum of all the forces acting on it. For instance, suppose we have a number of 

charged particles, , , and . The net force acting on is the force exerted on it by 

added to the force exerted on it by . More generally, in a system of n particles:

where is the force exerted on particle 1 by particle n and is the net force acting on 

particle 1. The particle in the center of the triangle in the diagram below has no net force 

acting upon it, because the forces exerted by the three other particles cancel each other 

out.
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EXAMPLE

In the figure above, what is the direction of the force acting on particle A?

The net force acting on A is the vector sum of the force of B acting on A and the force of C 

acting on A. Because they are both positive charges, the force between A and B is 

repulsive, and the force of B on A will act to push A toward the left of the page. C will have 

an attractive force on A and will pull it toward the bottom of the page. If we add the 

effects of these two forces together, we find that the net force acting on A is diagonally 

down and to the left.

Electric Field

An electric charge, q, can exert its force on other charged objects even though they are 

some distance away. Every charge has an electric field associated with it, which exerts 

an electric force over all charges within that field. We can represent an electric field 

graphically by drawing vectors representing the force that would act upon a positive point 

charge placed at that location. That means a positive charge placed anywhere in an 

electric field will move in the direction of the electric field lines, while a negative charge 
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will move in the opposite direction of the electric field lines. The density of the resulting 

electric field lines represents the strength of the electric field at any particular point.

Calculating Electric Field
The electric field is a vector field: at each point in space, there is a vector corresponding to 

the electric field. The force F experienced by a particle q in electric field E is:

Combining this equation with Coulomb’s Law, we can also calculate the magnitude of the 

electric field created by a charge q at any point in space. Simply substitute Coulomb’s Law 

in for , and you get:

Drawing Electric Field Lines
SAT II Physics may ask a question about electric fields that involves the graphical 

representation of electric field lines. We saw above how the field lines of a single point 

charge are represented. Let’s now take a look at a couple of more complicated cases.

Electric Fields for Multiple Charges

Just like the force due to electric charges, the electric field created by multiple charges is 

the sum of the electric fields of each charge. For example, we can sketch the electric field 

due to two charges, one positive and one negative:
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Line Charges and Plane Charges

Suppose we had a line of charge, rather than just a point charge. The electric field 

strength then decreases linearly with distance, rather than as the square of the distance. 

For a plane of charge, the field is constant with distance. 

Electric Potential

Because the electric force can displace charged objects, it is capable of doing work. The 

presence of an electric field implies the potential for work to be done on a charged object. 

By studying the electric potential between two points in an electric field, we can learn a 

great deal about the work and energy associated with electric force.

Electric Potential Energy
Because an electric field exerts a force on any charge in that field, and because that force 

causes charges to move a certain distance, we can say that an electric field does work on 

charges. Consequently, we can say that a charge in an electric field has a certain amount 

of potential energy, U. Just as we saw in the chapter on work, energy, and power, the 

potential energy of a charge decreases as work is done on it:
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Work
The work done to move a charge is the force, F, exerted on the charge, multiplied by the 

displacement, d, of the charge in the direction of the force. As we saw earlier, the 

magnitude of the force exerted on a charge q in an electric field E is = qE. Thus, we can 

derive the following equation for the work done on a charge:

Remember that d is not simply the displacement; it is the displacement in the direction 

that the force is exerted. When thinking about work and electric fields, keep these three 

rules in mind:

1. When the charge moves a distance r parallel to the electric field lines, the work 

done is qEr. 

2. When the charge moves a distance r perpendicular to the electric field lines, no 

work is done. 

3. When the charge moves a distance r at an angle to the electric field lines, the 

work done is qEr cos  .

EXAMPLE
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In an electric field, E, a positive charge, q, is moved in the circular path described above, 
from point A to point B, and then in a straight line of distance r toward the source of the 
electric field, from point B to point C. How much work is done by the electric field on the 
charge? If the charge were then made to return in a straight line from point C to point A, 
how much work would be done?

HOW MUCH WORK IS DONE MOVING THE CHARGE FROM POINT 

A TO POINT B TO POINT C ?

The path from point A to point B is perpendicular to the radial electric field throughout, 

so no work is done. Moving the charge from point B to point C requires a certain amount 

of work to be done against the electric field, since the positive charge is moving against its 

natural tendency to move in the direction of the electric field lines. The amount of work 

done is: 

The negative sign in the equation reflects the fact that work was done against the electric 

field.

HOW MUCH WORK IS DONE MOVING THE CHARGE DIRECTLY 

FROM POINT C BACK TO POINT A?

The electric force is a conservative force, meaning that the path taken from one point in 

the electric field to another is irrelevant. The charge could move in a straight line from 

point C to point A or in a complex series of zigzags: either way, the amount of work done 

by the electric field on the charge would be the same. The only thing that affects the 

amount of work done is the displacement of the charge in the direction of the electric field 

lines. Because we are simply moving the charge back to where it started, the amount of 

work done is W = qEr.

Potential Difference
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Much like gravitational potential energy, there is no absolute, objective point of reference 

from which to measure electric potential energy. Fortunately, we are generally not 

interested in an absolute measure, but rather in the electric potential, or potential 

difference, V, between two points. For instance, the voltage reading on a battery tells us 

the difference in potential energy between the positive end and the negative end of the 

battery, which in turn tells us the amount of energy that can be generated by allowing 

electrons to flow from the negative end to the positive end. We’ll look at batteries in more 

detail in the chapter on circuits.

Potential difference is a measure of work per unit charge, and is measured in units of 

joules per coulomb, or volts (V). One volt is equal to one joule per coulomb.

Potential difference plays an important role in electric circuits, and we will look at it more 

closely in the next chapter.

Conductors and Insulators

Idealized point charges and constant electric fields may be exciting, but, you may ask, 

what about the real world? Well, in some materials, such as copper, platinum, and most 

other metals, the electrons are only loosely bound to the nucleus and are quite free to 

flow, while in others, such as wood and rubber, the electrons are quite tightly bound to 

the nucleus and cannot flow. We call the first sort of materials conductors and the 

second insulators. The behavior of materials in between these extremes, called 

semiconductors, is more complicated. Such materials, like silicon and germanium, are 

the basis of all computer chips.

In a conductor, vast numbers of electrons can flow freely. If a number of electrons are 

transmitted to a conductor, they will quickly distribute themselves across the conductor 

so that the forces between them cancel each other out. As a result, the electric field within 

a conductor will be zero. For instance, in the case of a metal sphere, electrons will 

distribute themselves evenly so that there is a charge on the surface of the sphere, not 

within the sphere.

Key Formulas
Coulomb’s 

Law

The Law of 
Superpositio

n
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Definition of 
the Electric 

Field

Electric 
Potential 

Energy

Work Done 
by an 

Electric Field

Electric 
Potential

Practice Questions

1. . When a long-haired woman puts her hands on a Van de Graaff generator—a large 
conducting sphere with charge being delivered to it by a conveyer belt—her hair stands 
on end. Which of the following explains this phenomenon?

(A) Like charges attract

(B) Like charges repel

(C) Her hair will not stand on end

(D) Her body is conducting a current to the ground

(E) The Van de Graaf generator makes a magnetic field that draws her hair up on end

2. . Three particles, A, B, and C, are set in a line, with a distance of d between each of them, 
as shown above. If particle B is attracted to particle A, what can we say about the charge, 

, of particle A?

(A)
< –q

(B)
–q < < 0

(C)
= 0

(D)
0 < < +q

(E)
> +q
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3. . A particle of charge +2q exerts a force F on a particle of charge –q. What is the force 
exerted by the particle of charge –q on the particle of charge +2q?

(A) 1/2 F

(B) 0

(C) 2F

(D) F

(E) –F

4. . Two charged particles exert a force of magnitude F on one another. If the distance 
between them is doubled and the charge of one of the particles is doubled, what is the 
new force acting between them?

(A) 1/4 F

(B) 1/2 F

(C) F

(D) 2F

(E) 4F
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5. . Four charged particles are arranged in a square, as shown above. What is the direction of 
the force acting on particle A?

(A)

(B)

(C)

(D)

(E)

6. . Two identical positive charges of +Q are 1 m apart. What is the magnitude and direction 
of the electric field at point A, 0.25 m to the right of the left-hand charge?

(A) 3/4  kQ to the right

(B) 128/9  kQ to the left

(C) 160/9 kQ to the left

(D) 160/9 kQ to the right

(E) 128/9  kQ to the right

214



7. . A particle of charge +q is a distance r away from a charged flat surface and experiences a 
force of magnitude F pulling it toward the surface. What is the magnitude of the force 
exerted on a particle of charge +q that is a distance 2r from the surface?

(A) 1/8 F

(B) 1/4 F

(C) 1/2 F

(D) F

(E) 2F

8. . What is the change in potential energy of a particle of charge +q that is brought from a 
distance of 3r to a distance of 2r by a particle of charge –q?

(A)

(B)

(C)

(D)

(E)

9. . Two charges are separated by a distance d. If the distance between them is doubled, how 
does the electric potential between them change?

(A) It is doubled

(B) It is halved

(C) It is quartered

(D) It is quadrupled

(E) It is unchanged

10. . A solid copper sphere has a charge of +Q on it. Where on the sphere does the charge 
reside?

(A) +Q at the center of the sphere

(B) Q/2 at the center of the sphere and Q/2 on the outer surface

(C) –Q at the center of the sphere and +2Q on the outer surface

(D) +Q on the outer surface

(E) The charge is spread evenly throughout the sphere

Explanations
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1.      B     

Charge (either positive or negative) is brought to the woman by the Van de Graaf generator. This charge 

then migrates to the ends of her hair. The repulsive force between like charges makes the hair separate and 

stand on end. A violates Columbs Law. D and E do not explain the phenomenon. 

2.      E     

Particle C exerts an attractive force on the negatively charged particle B. If B is to be pulled in the direction 

of A, A must exert an even stronger attractive force than particle C. That means that particle A must have a 

stronger positive charge than particle C, which is +q.

3.      E     

The electric force exerted by one charged particle on another is proportional to the charge on both particles. 

That is, the force exerted by the +2q particle on the –q particle is of the same magnitude as the force 

exerted by the –q particle on the +2q particle, because, according to Coulomb’s Law, both forces have a 

magnitude of:

Since one particle is positive and the other is negative, this force is attractive: each particle is pulled toward 

the other. Since the two particles are pulled toward each other, the forces must be acting in opposite 

directions. If one particle experiences a force of F, then the other particle must experience a force of –F.

4.      B     

Coulomb’s Law tells us that : the force between two particles is directly proportional to their 

charges and inversely proportional to the square of the distance between them. If the charge of one of the 

particles is doubled, then the force is doubled. If the distance between them is doubled, then the force is 

divided by four. Since the force is multiplied by two and divided by four, the net effect is that the force is 

halved.

5.      C     

Particles C and D exert a repulsive force on A, while B exerts an attractive force. The force exerted by D is 

somewhat less than the other two, because it is farther away. The resulting forces are diagrammed below:
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The vector sum of the three vectors will point diagonally up and to the right, as does the vector in C.

6.      E     

The vector for electric field strength at any point has a magnitude of and points in the 

direction that a positive point charge would move if it were at that location. Because there are two different 

point charges, and , there are two different electric fields acting at point A. The net electric field at A 

will be the vector sum of those two fields. We can calculate the magnitude of the electric field of each charge 

respectively:

Since both and would exert a repulsive force on a positive point charge, points to the right and 

points to the left. The net electric field is:

Because is closer to A than , the electric field from will be stronger than the electric field from 

, and so the net electric field will point to the right.

7.      D     

The charged surface is a plane charge, and the electric field exerted by a plane charge is E = kq. That is, the 

magnitude of the electric field strength does not vary with distance, so a particle of charge +q will experience 

the same attractive force toward the charged surface no matter how far away it is.
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8.      B     

The change in potential energy of a point particle, with reference to infinity is given by:

The difference in potential energy between two points is given by:

9.      B     

The electric potential of a charge is given by the equation V = kq/r. In other words, distance is inversely 

proportional to electric potential. If the distance is doubled, then the electric potential must be halved.

10.      D     

Excess charges always reside on the surface of a conductor because they are free to move, and feel a 

repulsive force from each other.

DC Circuits

IN THE PREVIOUS CHAPTER, WE LOOKED AT the movement of charges, showing that 

a net charge creates an electric field with differences in electric potential energy at 

different points in the field. When two points in a field with a potential difference are 

connected by a conducting material, electrons will flow spontaneously from one point to 

another. For instance, when the two terminals of a battery (a source of potential 

difference) are connected by a copper wire (a conducting material), electrons flow 

spontaneously from the negative terminal of the battery toward the positive terminal. 

This mass flow of electrons in a particular direction creates a current, which is the 

source of the circuits that we will examine in this chapter.

As fans of hard rock know, there are two kinds of circuits, AC and DC. AC stands for 

alternating current: an electromagnetic generator induces a current that alternates in 

direction. AC circuits can be quite complicated, so you’ll be relieved to know this is the 

last you’ll hear of them: they don’t appear on SAT II Physics. However, you should expect 

a good number of questions on DC, or direct current, circuits. These are the more familiar 

circuits, where a current flows steadily in a single direction.
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Voltage

The batteries we use in flashlights and clock radios operate on chemical energy. This 

chemical energy—which you may learn more about in chemistry class—separates charges, 

creating a potential difference. To separate charges and create a positive and negative 

terminal, the battery must do a certain amount of work on the charges. This work per unit 

charge is called the voltage, V, or electromotive force, emf, and is measured in volts 

(V). Remember, one volt is equal to one joule per coulomb. 

You’ll notice that voltage is measured in the same units as potential difference. That’s 

because they are essentially the same thing. The voltage of a battery is a measure of the 

work that has been done to set up a potential difference between the two terminals. We 

could draw an analogy to the amount of work required to lift an object in the air, giving it 

a certain amount of gravitational potential energy: both work and gravitational potential 

energy are measured in joules, and the amount of work done on the object is exactly equal 

to the amount of gravitational potential energy it acquires.

When a current flows about a circuit, we say there is a certain “voltage drop” or “drop in 

potential” across the circuit. An electric current converts potential energy into work: the 

electric field in the circuit does work on the charges to bring them to a point of lower 

potential. In a circuit connected to a 30 V battery, the current must drop 30 volts to send 

the electrons from the negative terminal to the positive terminal.

Current

When a wire is connected between the terminals of a battery, the potential difference in 

the battery creates an electric field in the wire. The electrons at the negative terminal 

move through the wire to the positive terminal. 

Although the electrons in the wire move quickly, they go in random directions and collide 

with other electrons and the positive charges in the wire. Each electron moves toward the 

positive terminal at a speed , called the drift speed, which is only about one 

millimeter per second. However, when we study circuits, we do not follow individual 

electrons as they move along the wire, but rather we look at the current, I, that they 

create. Current is the charge per unit time across an imaginary plane in the wire: 
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The unit of current is the coulomb per second, which is called an ampere (A): 1 A = 

1 C/s.

Direction of Current
Although the electrons are the charge carriers and move from the negative terminal to the 

positive terminal of the battery, the current flows in the opposite direction, from the 

positive terminal to the negative terminal. This may seem odd, but we can draw an 

analogous example from everyday life. Suppose you arrange 12 chairs in a circle, and get 

11 people to sit down, leaving one chair empty. If each person in turn were to shift over in 

the clockwise direction to fill the vacant spot, the vacant spot would appear to move in the 

counterclockwise direction. If we think of the electrons in a circuit as the people, then the 

current moves in the direction of the vacant spot. 

Resistance

Some materials conduct current better than others. If we had a copper wire and a glass 

wire with the same length and cross section, and put the same potential difference across 

them, the current in the copper wire would be much larger than the current in the glass 

wire. The structure of copper, a conductor, is such that it permits electrons to move about 

more freely than glass, an insulator. We say that the glass wire has a higher resistance, 

R, than the copper wire.

We can express resistance in terms of the potential difference, , and the current, I: 

Generally, the is omitted. For a given voltage, the larger the current, the smaller the 

resistance. The unit of resistance is the ohm ( ). One ohm is equal to one volt per 

ampere: 1 = 1 V/A.

Ohm’s Law
Ohm’s Law relates the three important quantities of current, voltage, and resistance:
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This equation tells us that we can maximize the current by having a large voltage drop 

and a small resistance. This is one of the most important equations dealing with 

electromagnetism, and SAT II Physics is bound to call upon you to remember it. 

EXAMPLE

Three batteries are added to a circuit, multiplying the potential difference in the circuit by 
four. A resistor is also added, doubling the resistance of the circuit. How is the current in 
the wire affected?

Taking the initial voltage to be V and the initial resistance to be R, the initial current is 

= V/R. The new voltage is 4V and the new resistance is 2R, so the final current is:

These changes double the current.

Resistivity
Resistivity, , is a property of a material that affects its resistance. The higher the 

resistivity, the higher the resistance. Resistance also depends on the dimensions of the 

wire—on its length, L, and cross-sectional area,  A:

A longer wire provides more resistance because the charges have farther to go. A larger 

cross-sectional area reduces the resistance because it is easier for the charges to move. 

The unit of resistivity is the ohm-meter, · m. The resistivity of copper is about 10–8 · 

m and the resistivity of glass is about 1012 · m. At higher temperatures, the resistivity of 

most metals increases.

EXAMPLE

A copper wire of length 4 m and cross-sectional area 4 mm2 is connected to a battery with a 
potential difference of 9 V. What is the current that runs through the wire? Approximate the 

resistivity for copper to be 10–8 Â· m.

As we know, the current in a wire is a measure of voltage divided by resistance. We know 

that the voltage for the circuit is 9 V, but we don’t know the resistance. However, since we 

know that the resistivity for copper is 10–8 · m, we can use the formula for resistivity to 

calculate the resistance in the wire.

First, we need to remember that area is measured in m2, not mm2. If 1 mm = m, 

then 4 mm2 = = m2.
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Now we can plug the values for the resistivity of copper and the length and cross-

sectional area of the wire into the equation for resistivity:

Once we know the resistance of the circuit, calculating the current involves a simple 

application of Ohm’s Law:

Conductivity

Infrequently, you may come across talk of conductivity and conductance rather than 

resistivity and resistance. As the names suggest, these are just the inverse of their 

resistant counterparts. Saying a material has high conductivity is another way of saying 

that material has a low resistivity. Similarly, a circuit with high conductance has low 

resistance. Someone with half a sense of humor named the unit of conductance the mho (

), where 1 = 1 .

Energy, Power, and Heat

As a charge carrier moves around a circuit and drops an amount of potential, V, in time t, 

it loses an amount of potential energy, qV. The power, or the rate at which it loses energy, 

is qV/t. Since the current, I, is equal to q/t, the power can be expressed as:

The unit of power is the watt (W). As you learned in Chapter 4, one watt is equal to one 

joule per second.

VIR and PIV Triangles
Ohm’s Law and the formula for power express fundamental relationships between power, 

current, and voltage, and between voltage, current, and resistance. On occasion, you may 

be asked to calculate any one of the three variables in these equations, given the other 

two. As a result, good mnemonics to remember are the VIR and PIV triangles:
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If the two variables you know are across from one another, then multiplying them will get 

you the third. If the two variables you know are above and below one another, then you 

can get the third variable by dividing the one above by the one below. For instance, if you 

know the power and the voltage in a given circuit, you can calculate the current by 

dividing the power by the voltage.

Power and Resistance
We can combine the equations for power and Ohm’s Law to get expressions for power in 

terms of resistance:

Heat
As current flows through a resistor, the resistor heats up. The heat in joules is given by:

where t is the time in seconds. In other words, a resistor heats up more when there is a 

high current running through a strong resistor over a long stretch of time.

EXAMPLE

A circuit with a potential difference of 10 V is hooked up to a light bulb whose resistance is 

20 . The filament in the light bulb heats up, producing light. If the light bulb is left on for 
one minute, how much heat is produced?

We are being asked for the amount of heat that is dissipated, which is the product of 

power and time. We have learned to express power in terms of voltage and resistance in 

the formula P = V2/R. Applying that formula to the problem at hand, we find:

Then, plugging the appropriate numbers into the equation for heat, we find:

Every minute, the filament produces 300 J of heat.

Kilowatt-Hours
When electric companies determine how much to charge their clients, they measure the 

power output and the amount of time in which this power was generated. Watts and 

seconds are relatively small units, so they measure in kilowatt-hours, where one kilowatt 

is equal to 1000 watts. Note that the kilowatt-hour, as a measure of power multiplied by 

time, is a unit of energy. A quick calculation shows that:
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Circuits

Most SAT II Physics questions on circuits will show you a circuit diagram and ask you 

questions about the current, resistance, or voltage at different points in the circuit. These 

circuits will usually consist of a power source and one or more resistors arranged in 

parallel or in series. You will occasionally encounter other circuit elements, such as a 

voltmeter, an ammeter, a fuse, or a capacitor. Reading the diagrams is not difficult, but 

since there will be a number of questions on the test that rely on diagrams, it’s important 

that you master this skill. Here’s a very simple circuit diagram:

Zigzags represent resistors, and a pair of parallel, unequal lines represents a battery cell. 

The longer line is the positive terminal and the shorter line is the negative terminal. That 

means the current flows from the longer line around the circuit to the shorter line. In the 

diagram above, the current flows counterclockwise. Often, more than one set of unequal 

parallel lines are arranged together; this just signifies a number of battery cells arranged 

in series.

Example

In the diagram above, = 6 V and R = 12 . What is the current in the circuit and what is 
the power dissipated in the resistor? 

You don’t really need to refer to the diagram in order to solve this problem. As long as 

you know that there’s a circuit with a six-volt battery and a 12-ohm resistor, you need 

only apply Ohm’s Law and the formula for power.

Since I = V/R, the current is:

The power is:

Resistors in Series
Two resistors are in series when they are arranged one after another on the circuit, as in 

the diagram below. The same amount of current flows first through one resistor and then 

the other, since the current does not change over the length of a circuit.
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However, each resistor causes a voltage drop, and if there is more than one resistor in the 

circuit, the sum of the voltage drops across each resistor in the circuit is equal to the total 

voltage drop in the circuit. The total resistance in a circuit with two or more resistors in 

series is equal to the sum of the resistance of all the resistors: a circuit would have the 

same resistance if it had three resistors in series, or just one big resistor with the 

resistance of the original three resistors put together. In equation form, this principle is 

quite simple. In a circuit with two resistors, and , in series, the total resistance, 

is:

EXAMPLE

In the figure above, a battery supplies 30 V to a circuit with a 10 resistor and a 20 
resistor. What is the current in the circuit, and what is the voltage drop across each resistor?

WHAT IS THE CURRENT IN THE CIRCUIT?

We can determine the current in the circuit by applying Ohm’s Law: I = V/R. We know 

what V is, but we need to calculate the total resistance in the circuit by adding together 

the individual resistances of the two resistors in series:

When we know the total resistance in the circuit, we can determine the current through 

the circuit with a simple application of Ohm’s Law:

WHAT IS THE VOLTAGE DROP ACROSS EACH RESISTOR?

Determining the voltage drop across an individual resistor in a series of resistors simply 

requires a reapplication of Ohm’s Law. We know the current through the circuit, and we 

know the resistance of that individual resistor, so the voltage drop across that resistor is 
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simply the product of the current and the resistance. The voltage drop across the two 

resistors is:

Note that the voltage drop across the two resistors is 10 V + 20 V = 30 V, which is the 

total voltage drop across the circuit.

Resistors in Parallel
Two resistors are in parallel when the circuit splits in two and one resistor is placed on 

each of the two branches.

In this circumstance, it is often useful to calculate the equivalent resistance as if there 

were only one resistor, rather than deal with each resistor individually. Calculating the 

equivalent resistance of two or more resistors in parallel is a little more complicated than 

calculating the total resistance of two or more resistors in series. Given two resistors, 

and , in parallel, the equivalent resistance, , is:

When a circuit splits in two, the current is divided between the two branches, though the 

current through each resistor will not necessarily be the same. The voltage drop must be 

the same across both resistors, so the current will be stronger for a weaker resistor, and 

vice versa.

EXAMPLE

Two resistors, = 5 and = 20 , are set up in parallel, as in the diagram above. The 

battery produces a potential difference of = 12 V. What is the total resistance in the 

circuit? What is the current running through and ? What is the power dissipated in the 
resistors?

WHAT IS THE TOTAL RESISTANCE IN THE CIRCUIT?

Answering this question is just a matter of plugging numbers into the formula for 

resistors in parallel.
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So = 4 .

WHAT IS THE CURRENT RUNNING THROUGH R1 AND R2?

We know that the total voltage drop is 12 V, and since the voltage drop is the same across 

all the branches of a set of resistors in parallel, we know that the voltage drop across both 

resistors will be 12 V. That means we just need to apply Ohm’s Law twice, once to each 

resistor:

If we apply Ohm’s Law to the total resistance in the system, we find that = (12 V)/(4 ) 

= 3 A. As we might expect, the total current through the system is the sum of the current 

through each of the two branches. The current is split into two parts when it branches 

into the resistors in parallel, but the total current remains the same throughout the whole 

circuit. This fact is captured in the junction rule we will examine when we look at 

Kirchhoff’s Rules.

WHAT IS THE POWER DISSIPATED IN THE RESISTORS?

Recalling that P = I2R, we can solve for the power dissipated through each resistor 

individually, and in the circuit as a whole. Let be the power dissipated in , the 

power dissipated in , and the power dissipated in .

Note that + = .

Circuits with Resistors in Parallel and in Series
Now that you know how to deal with resistors in parallel and resistors in series, you have 

all the tools to approach a circuit that has resistors both in parallel and in series. Let’s 

take a look at an example of such a circuit, and follow two important steps to determine 

the total resistance of the circuit.
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1. Determine the equivalent resistance of the resistors in parallel. We’ve 

already learned to make such calculations. This one is no different:

So the equivalent resistance is 6 . In effect, this means that the two resistors in parallel 

have the same resistance as if there were a single 6 resistor in their place. We can 

redraw the diagram to capture this equivalence:

1. Treating the equivalent resistance of the resistors in parallel as a 

single resistor, calculate the total resistance by adding resistors in 

series. The diagram above gives us two resistors in series. Calculating the total 

resistance of the circuit couldn’t be easier:

Now that you’ve looked at this two-step technique for dealing with circuits in parallel and 

in series, you should have no problem answering a range of other questions.

EXAMPLE
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Consider again the circuit whose total resistance we have calculated. What is the current 
through each resistor? What is the power dissipated in each resistor?

WHAT IS THE CURRENT RUNNING THROUGH EACH RESISTOR?

We know that resistors in series do not affect the current, so the current through is the 

same as the total current running through the circuit. Knowing the total resistance of the 

circuit and the voltage drop through the circuit, we can calculate the circuit’s total current 

by means of Ohm’s Law:

Therefore, the current through is 3 A.

But be careful before you calculate the current through and : the voltage drop 

across these resistors is not the total voltage drop of 30 V. The sum of the voltage drops 

across and the two resistors in parallel is 30 V, so the voltage drop across just the 

resistors in parallel is less than 30 V.

If we treat the resistors in parallel as a single equivalent resistor of 6 , we can calculate 

the voltage drop across the resistors by means of Ohm’s Law:

Now, recalling that current is divided unevenly between the branches of a set of resistors 

in parallel, we can calculate the current through and in the familiar way:

WHAT IS THE POWER DISSIPATED ACROSS EACH RESISTOR?
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Now that we know the current across each resistor, calculating the power dissipated is a 

straightforward application of the formula P = I2R:

Common Devices in Circuits
In real life (and on SAT II Physics) it is possible to hook devices up to a circuit that will 

read off the potential difference or current at a certain point in the circuit. These devices 

provide SAT II Physics with a handy means of testing your knowledge of circuits.

Voltmeters and Ammeters

A voltmeter, designated: 

measures the voltage across a wire. It is connected in parallel with the stretch of wire 

whose voltage is being measured, since an equal voltage crosses both branches of two 

wires connected in parallel.

An ammeter, designated:

is connected in series. It measures the current passing through that point on the circuit.

EXAMPLE

In the diagram above, = 9 V, = 5 , = 5 , and = 20 . What are the values 
measured by the ammeter and the voltmeter?

WHAT DOES THE AMMETER READ?

Since the ammeter is not connected in parallel with any other branch in the circuit, the 

reading on the ammeter will be the total current in the circuit. We can use Ohm’s Law to 

determine the total current in the circuit, but only if we first determine the total 

resistance in the circuit.
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This circuit consists of resistors in parallel and in series, an arrangement we have looked 

at before. Following the same two steps as we did last time, we can calculate the total 

resistance in the circuit:

1. Determine the equivalent resistance of the resistors in parallel.

We can conclude that = 4 .

1. Treating the equivalent resistance of the resistors in parallel as a 

single resistor, calculate the total resistance by adding resistors in 

series.

Given that the total resistance is 9 and the total voltage is 9 V, Ohm’s Law tells us that 

the total current is:

The ammeter will read 1 A.

WHAT DOES THE VOLTMETER READ?

The voltmeter is connected in parallel with and , so it will register the voltage drop 

across these two resistors. Recall that the voltage drop across resistors in parallel is the 

same for each resistor.

We know that the total voltage drop across the circuit is 9 V. Some of this voltage drop 

will take place across , and the rest of the voltage drop will take place across the 

resistors in parallel. By calculating the voltage drop across and subtracting from 9 V, 

we will have the voltage drop across the resistors in parallel, which is what the voltmeter 

measures.

If the voltage drop across is 5 V, then the voltage drop across the resistors in parallel is 

9 V – 5 V = 4 V. This is what the voltmeter reads.

Fuses
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A fuse burns out if the current in a circuit is too large. This prevents the equipment 

connected to the circuit from being damaged by the excess current. For example, if the 

ammeter in the previous problem were replaced by a half-ampere fuse, the fuse would 

blow and the circuit would be interrupted.

Fuses rarely come up on SAT II Physics. If a question involving fuses appears, it will 

probably ask you whether or not the fuse in a given circuit will blow under certain 

circumstances. 

Kirchhoff’s Rules
Gustav Robert Kirchhoff came up with two simple rules that simplify many complicated 

circuit problems. The junction rule helps us to calculate the current through resistors in 

parallel and other points where a circuit breaks into several branches, and the loop rule 

helps us to calculate the voltage at any point in a circuit. Let’s study Kirchhoff’s Rules in 

the context of the circuit represented below:

Before we can apply Kirchhoff’s Rules, we have to draw arrows on the diagram to denote 

the direction in which we will follow the current. You can draw these arrows in any 

direction you please—they don’t have to denote the actual direction of the current. As 

you’ll see, so long as we apply Kirchhoff’s Rules correctly, it doesn’t matter in what 

directions the arrows point. Let’s draw in arrows and label the six vertices of the circuit:

We repeat, these arrows do not point in the actual direction of the current. For instance, 

we have drawn the current flowing into the positive terminal and out of the negative 

terminal of , contrary to how we know the current must flow.

The Junction Rule
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The junction rule deals with “junctions,” where a circuit splits into more than one branch, 

or when several branches reunite to form a single wire. The rule states:

The current coming into a junction equals the current coming out.

This rule comes from the conservation of charge: the charge per unit time going into the 

junction must equal the charge per unit time coming out. In other words, when a circuit 

separates into more than one branch—as with resistors in parallel—then the total current 

is split between the different branches.

The junction rule tells us how to deal with resistors in series and other cases of circuits 

branching in two or more directions. If we encounter three resistors in series, we know 

that the sum of the current through all three resistors is equal to the current in the wire 

before it divides into three parallel branches.

Let’s apply the junction rule to the junction at B in the diagram we looked at earlier.

According to the arrows we’ve drawn, the current in the diagram flows from A into B 

across and flows out of B in two branches: one across toward E and the other 

toward C. According to the junction rule, the current flowing into B must equal the 

current flowing out of B. If we label the current going into B as and the current going 

out of B toward E as , we can conclude that the current going out of B toward C is – 

. That way, the current flowing into B is and the current flowing out of B is + (  – 

) = .

The Loop Rule

The loop rule addresses the voltage drop of any closed loop in the circuit. It states:

The sum of the voltage drops around a closed loop is zero. 

This is actually a statement of conservation of energy: every increase in potential energy, 

such as from a battery, must be balanced by a decrease, such as across a resistor. In other 

words, the voltage drop across all the resistors in a closed loop is equal to the voltage of 

the batteries in that loop. 

In a normal circuit, we know that when the current crosses a resistor, R, the voltage drops 

by IR, and when the current crosses a battery, V, the voltage rises by V. When we trace a 

loop—we can choose to do so in the clockwise direction or the counterclockwise direction

—we may sometimes find ourselves tracing the loop against the direction of the arrows 
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we drew. If we cross a resistor against the direction of the arrows, the voltage rises by IR. 

Further, if our loop crosses a battery in the wrong direction—entering in the positive 

terminal and coming out the negative terminal—the voltage drops by V. To summarize:

• Voltage drops by IR when the loop crosses a resistor in the direction of the 

current arrows. 

• Voltage rises by IR when the loop crosses a resistor against the direction of the 

current arrows. 

• Voltage rises by V when the loop crosses a battery from the negative terminal to 

the positive terminal. 

• Voltage drops by V when the loop crosses a battery from the positive terminal to 

the negative terminal.

Let’s now put the loop rule to work in sorting out the current that passes through each of 

the three resistors in the diagram we looked at earlier. When we looked at the junction 

rule, we found that we could express the current from A to B—and hence the current from 

E to D to A—as , the current from B to E as , and the current from B to C—and hence 

the current from C to F to E—as – . We have two variables for describing the current, 

so we need two equations in order to solve for these variables. By applying the loop rule 

to two different loops in the circuit, we should be able to come up with two different 

equations that include the variables we’re looking for. Let’s begin by examining the loop 

described by ABED.

Remember that we’ve labeled the current between A and B as and the current between 

B and E as . Because the current flowing from E to A is the same as that flowing from A 

to B, we know this part of the circuit also has a current of .

Tracing the loop clockwise from A, the current first crosses and the voltage drops by 

. Next it crosses and the voltage drops by . Then the current crosses , and 

the voltage rises by 12 V. The loop rule tells us that the net change in voltage is zero 
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across the loop. We can express these changes in voltage as an equation, and then 

substitute in the values we know for , , and :

Now let’s apply the loop rule to the loop described by BCFE. 

Tracing the loop clockwise from B, the arrows cross , but in the wrong direction, from 

positive to negative, meaning that the voltage drops by 8 V. Next, the current crosses , 

with an additional voltage drop of . Finally, it crosses , but in the opposite 

direction of the arrows, so the current goes up by . Now we can construct a second 

equation:

Plugging this solution for into the earlier equation of 4  + 3  = 12, we get:

So the current across is 28/13 A. With that in mind, we can determine the current 

across and by plugging the value for into the equations we derived earlier:
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The negative value for the current across means that the current actually flows in the 

opposite direction of the arrow we drew. This makes perfect sense when we consider that 

current should normally flow out of the positive terminal and into the negative terminal 

of battery .

It doesn’t matter how you draw the current arrows on the diagram, because if you apply 

Kirchhoff’s Rules correctly, you will come up with negative values for current wherever 

your current arrows point in the opposite direction of the true current. Once you have 

done all the math in accordance with Kirchhoff’s Rules, you will quickly be able to 

determine the true direction of the current.

Capacitors

Capacitors rarely come up on SAT II Physics, but they do sometimes make an 

appearance. Because capacitance is the most complicated thing you need to know about 

DC circuits, questions on capacitors will usually reward you simply for knowing what’s 

going on. So long as you understand the basic principles at work here, you’re likely to get 

a right answer on a question most students will answer wrong.

A capacitor is a device for storing charge, made up of two parallel plates with a space 

between them. The plates have an equal and opposite charge on them, creating a 

potential difference between the plates. A capacitor can be made of conductors of any 

shape, but the parallel-plate capacitor is the most common kind. In circuit diagrams, 

a capacitor is represented by two equal parallel lines.

For any capacitor, the ratio of the charge to the potential difference is called the 

capacitance, C:

For a parallel-plate capacitor, C is directly proportional to the area of the plates, A, and 

inversely proportional to the distance between them, d. That is, if the area of the plates is 

doubled, the capacitance is doubled, and if the distance between the plates is doubled, the 
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capacitance is halved. The proportionality constant between C and A/d is , called the 

permittivity of free space, which we encountered in the previous chapter in relation to 

Coulomb’s constant. In case you forgot, C2 /N · m2.

The unit of capacitance is the farad (F). One farad is equal to one coulomb per volt. Most 

capacitors have very small capacitances, which are usually given in microfarads, where 1 

µF = 10–6 F.

Energy
To move a small amount of negative charge from the positive plate to the negative plate of 

a capacitor, an external agent must do work. This work is the origin of the energy stored 

by the capacitor. 

If the plates have a charge of magnitude q, the potential difference is . If q = 0, 

and work is done to add charge until q = Q, the total work required is:

This is the energy stored by the capacitor. Manipulating this equation and the equation 

for capacitance, , we can derive a number of equivalent forms:

Equivalent Capacitance
Like resistors, capacitors can be arranged in series or in parallel. The rule for adding 

capacitance is the reverse of adding resistance:

Capacitors in series add like resistors in parallel, and capacitors in parallel add like 

resistors in series. 

For two capacitors in series:

For two capacitors in parallel:

EXAMPLE
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Given = 2 ÂµF, = 6 ÂµF, and = 3 ÂµF, what is the total capacitance of the circuit 
in the figure above? 

First, we find the equivalent capacitance of and . Since they are in parallel, = 

+ = 8 µF. Then is given by:

Dielectrics
One way to keep the plates of a capacitor apart is to insert an insulator called a 

dielectric between them. A dielectric increases the capacitance. There is an electric field 

between the plates of a capacitor. This field polarizes the molecules in the dielectric; that 

is, some of the electrons in the molecules move to the end of the molecule, near the 

positive plate:

The movement of electrons creates a layer of negative charge by the positive plate and a 

layer of positive charge by the negative plate. This separation of charge, in turn, creates 

an electric field in the dielectric that is in the opposite direction of the original field of the 

capacitor. This reduces the total electric field:
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The Greek letter is called the dielectric constant, and it varies from material to 

material. For all materials, > 1.

For a parallel-plate capacitor, the reduction in E means that is also reduced by a 

factor of . Then, since C = Q/ , we find that:

If the potential difference across the capacitor is too large, then the electric field will be so 

strong that the electrons escape from their atoms and move toward the positive plate. 

This dielectric breakdown not only discharges the capacitor, but also burns a hole in 

the dielectric and ruins the capacitor. 

Key Formulas
Ohm’s Law

Resistance

Power 
Dissipated 

in a 
Resistor

Heat 
Dissipated 

in a 
Resistor

Equivalent 
Resistance 

of Two 
Resistors 
in Series

Equivalent 
Resistance 

of Two 
Resistors 

in Parallel

Stored 
Energy of a 
Capacitor

Equivalent 
Capacitanc

e of Two 
Capacitors 
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in Series

Equivalent 
Capacitanc

e of Two 
Capacitors 
in Parallel

Practice Questions

The following choices refer to a circuit consisting of a resistor and a battery.

(A) It is doubled

(B) It is quadrupled

(C) It is halved

(D) It is quartered

(E) It remains the same

1. . What happens to the current in the resistor when the voltage is doubled and the resistance 
remains the same?

2. . What happens to the power dissipated in the resistor when the resistance is quadrupled 
and the voltage remains constant?

3. . Which of the following affects the resistance of a wire?

  I. The material from which it is made
 II. The length of the wire
III. The diameter of the wire

(A) I only

(B) II only

(C) I and II only

(D) I and III only

(E) I, II, and III
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4. .
Two resistors, and , are identical, but the potential difference across is half the 

potential difference across . What is the ratio of the current in to the current in 
?

(A)

(B)

(C) 1

(D) 2

(E) 4

Questions 5 and 6 refer to two identical resistors, arranged in parallel.

5. . If a third identical resistor is added in parallel, what is the ratio of the new equivalent 
resistance to the old? 

(A)

(B)

(C) 1

(D)

(E)

6. . Assuming the voltage is kept constant, what is the ratio between the new current and the 
old current when a third identical resistor is added in parallel with the earlier two?

(A)

(B)

(C) 1

(D)

(E)
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7. . How much heat is produced in a 5 resistor in 10 s when a current of 2 A flows through 
it?

(A) 2 J

(B) 10 J

(C) 20 J

(D) 100 J

(E) 200 J

8. . Two identical capacitors are arranged in a circuit. What is the ratio of the equivalent 
capacitance of the circuit when the capacitors are in series to that when they are in 
parallel? 

(A)

(B)

(C) 1

(D) 2

(E) 4

9. . A potential difference of exists between two plates of a parallel-plate capacitor with 

capacitance C. A dielectric with a dielectric constant of is then placed between the 
plates of the capacitor. What is the energy stored in the capacitor?

(A)

(C/ )( )2

(B)

( /C)( )2

(C)

C( )2

(D)

C

(E)

(C/ )
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10. . A dielectric is inserted into a capacitor while the charge on it is kept constant. What 
happens to the potential difference and the stored energy? 

(A) The potential difference decreases and the stored energy increases

(B) Both the potential difference and the stored energy increase

(C) The potential difference increases and the stored energy decreases

(D) Both the potential difference and the stored energy decrease

(E) Both the potential difference and the stored energy remain the same

Explanations

1.      A     

Ohm’s Law tells us that current and voltage are directly proportional: doubling the voltage will also double 

the current.

2.      D     

The power dissipated in a resistor is given by the formula P = V2/R. Since P and R are inversely proportional, 

multiplying the resistance by four will divide the power by four.

3.      E     

The resistance for a wire is given by the formula R = L/A, where is the resistivity of the material the wire 

is made of, L is the length of the wire, and A is the cross-sectional area of the wire.

The value of varies from material to material, so the material the wire is made of does affect the resistance 

in the wire, which is why we don’t wire our houses with glass or wooden wires. The length of the wire, L, also 

affects the resistance, since the longer a wire gets, the farther the electrons in the wire have to travel. The 

cross-sectional area, A, and hence the diameter of the wire affects the resistance, since charges have more 

room to move in a wider wire. Since all three of the statements are true, the answer is E.

4.      B     

According to Ohm’s Law, V = IR: current is directly proportional to potential difference. If the potential 

difference across is half the potential difference across , and if and have the same resistance, 

then the current through is half the current through .

5.      B     

243



The equivalent resistance, , of two identical resistors in parallel is given by the formula:

The equivalent resistance of three identical resistors in parallel is given by the formula:

The ratio, then, between the new resistance and the old is:

6.      D     

According to Ohm’s Law, V = IR, current and resistance are inversely proportional. In the previous question, 

we saw that the new resistance is 2 /3 the old resistance. That means that, inversely, the new current is 3 /2 

times the old resistance.

7.      E     

The power dissipated in a resistor is given by the formula P = I2R, which in this case has a value of 20 W. The 

heat dissipated in a resistor is given by the formula H = Pt: every second, the resistor dissipates 20 J of 

heat. Since we are looking at a 10-second period, the total heat dissipated is 200 J.

8.      A     

The equivalent capacitance of two capacitors in series is:

244



The equivalent capacitance of two capacitors in parallel is simply the sum of the two capacitors, so = 

+ = 2C. The ratio between the equivalent capacitance of the two capacitors in series and the two 

capacitors in parallel is therefore:

9.      C     

The energy stored in a capacitor is . When a dielectric with a dielectric constant of is 

inserted between the plates of a capacitor with capacitance C, the new capacitance is C. So (C) is the 

correct answer.

10.      D     

When the dielectric is inserted, the electrons in it create an electric field that opposes the field between the 

plates of the capacitor. Since electric field and potential difference are directly proportional, this decrease in 

the electric field causes a decrease in the potential difference.

The energy stored in a capacitor is given by the equation , so a decrease in the potential 

difference also leads to a decrease in the stored energy.

Magnetism 

WHEN WE THINK “MAGNET,” WE MIGHT envision those things we stick on our fridge 

door. It may be a bit confusing, then, to discover that magnetism is closely related to 

electricity. In fact, there is a single force—the electromagnetic force—that governs the 

behavior of both magnets and electric charges.

We have seen that there is a reciprocal relationship between electric charges and electric 

fields: electric charges generate electric fields and electric fields exert a force on electric 

charges. Similarly, there is a reciprocal relationship between a moving electric charge and 

a magnetic field: a moving electric charge creates a magnetic field, and magnetic fields 

exert a force on moving charges.

Bearing this reciprocal relationship in mind, we can make sense of electromagnets, the 

on-off magnets you see, for instance, lifting and dropping cars at the junkyard. The 

magnetism in these electromagnets is generated by a current running through the magnet 

that can be turned on and off at will. However, we still haven’t explained how any of this 

connects with the permanent magnets we stick to our fridge door.
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Permanent Magnets

Like all other materials, permanent magnets are made up of atoms that have electrons 

orbiting a nucleus of protons and neutrons. In moving around the nucleus, these 

electrons create miniscule magnetic fields. In most materials, these tiny fields all point in 

different random directions, so the bulk material does not have a magnetic field. But in 

permanent magnets, the fields are all lined up together, and so the material is 

magnetized. Materials, like iron, that can be magnetized, are called ferromagnetic. 

There are two other types of magnetic materials: If a nonferromagnetic material is 

attracted by a magnet, it is called paramagnetic. The atoms in an paramagnet line up in 

the direction of an external field. If a nonferromagnetic material is repelled by a magnet, 

it is called diamagnetic. The atoms in a diamagnet line up against an external field.

Magnetic Field Lines
Permanent magnets—and electromagnets—have positive and negative poles, often called 

“north” and “south,” respectively. Like electric field lines, magnetic field lines go from the 

positive, or north, pole, toward the negative, or south, pole. For example, the magnetic 

field of a bar magnet looks like this:

A horseshoe-shaped magnet creates a magnetic field like this:

It is possible to do a nifty experiment to see these magnetic field lines by scattering iron 

fillings around a permanent magnet—the filings will move to trace the lines.

The Earth’s Magnetic Field
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The Earth itself acts like a huge bar magnet. The presence of a magnetic field about the 

Earth allows us to use compasses that point northward, and creates a spectacular aurora 

over the northern and southern skies. But the magnetism of the Earth is quite 

complicated, and is still an active subject of research for geologists, so let us turn to the 

simpler cases of idealized charges and constant magnetic fields.

Magnetic Force on Charges

The questions on magnetism that you’ll find on SAT II Physics will deal for the most part 

with the reciprocal relationship between magnetic fields and moving charges. Generally, 

these questions will expect you to predict the motion of a charge through a magnetic field, 

or to calculate the magnitude of the magnetic force or magnetic field strength necessary 

to move a charge in a certain manner.

Calculating Magnetic Force
A magnetic field exerts a force on a moving charge. Given a magnetic field, B, and a 

charge, q, moving with velocity, v, the force, F, on the charge is:

Magnetic field strength is measured in teslas (T), where 1 T = 1 N/A · m.

You’ll notice that the force on a moving particle is calculated as a cross product of the 

particle’s velocity and the magnetic field’s strength. You can determine the direction of 

the vector by using the right-hand rule as follows: point the fingers of your right 

hand in the direction of the velocity vector and then curl them around to point in the 

direction of the magnetic field vector. The direction in which your thumb points gives you 

the direction of the vector.

However, though q is a scalar quantity, it can affect the direction of the force vector. If q 

has a negative value, then has a negative value, and so the force vector will point 

in a direction opposite from what the right-hand rule might tell you.

You can calculate the magnitude of the magnetic force without using the right-hand rule, 

so long as you know the angle, , between the velocity vector and the magnetic field 

vector:

The sin term is important, because it lets us see very quickly that there is no force if a 

charge moves parallel to a magnetic field, and that the greatest force occurs when a 

charge moves perpendicular to the magnetic field.

EXAMPLE
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A charge of 5 C moves upward at 2 m/s in a magnetic field of 0.3 T that points into the 
page. What is the magnitude and direction of the force that the charge experiences?

The cross product of is a vector of magnitude qvB sin = 3 N. Following the right-

hand rule, point your fingers toward the top of the page, and then curl them around so 

that they point into the page. You’ll find that your thumb is pointing left, which is the 

direction of the vector. Because the value of q is positive, the force acting on the 

particle will also be in the leftward direction.

A Quick Note on Vectors Going In and Out of the Page

The magnetic field lines illustrated in this example that are going into the page are 

represented by circles with an “x” inscribed in them. Vector lines pointing out of the page 

are represented by circles with a dot in them. You can think about these symbols as 

arrows appearing from in front or behind: from in front, you see the conical tip of the 

arrow, and from behind you see the fletching of the four feathers in an “x” shape.

Trajectory of Charges in a Magnetic Field
The direction of the force on a moving charge depends on the direction of its velocity. As 

its velocity changes, so will its direction. The magnitude of the velocity will not change, 

but charged particles moving in a magnetic field experience nonlinear trajectories.

When the Velocity Vector and Magnetic Field Lines Are 

Perpendicular

In the example above, we saw that a force of 3 N would pull the charged particle to the 

left. However, as soon as the particle begins to move, the velocity vector changes, and so 

must the force acting on the particle. As long as the particle’s velocity vector is at a right 

angle to the magnetic field lines, the force vector will be at right angles to both the 

velocity vector and the magnetic field. As we saw in the chapter on circular motion and 

gravitation, a force that always acts perpendicular to the velocity of an object causes that 

object to move in circular motion.
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Because the velocity vector and the magnetic field lines are at right angles to one another, 

the magnitude of the magnetic force is F = qvB. Furthermore, because the magnetic force 

pulls the particle in a circular path, it is a centripetal force that fits the equation F = 

mv2/r. Combining these two equations, we can solve for r to determine the radius of the 

circle of the charged particle’s orbit:

When the Velocity Vector and Magnetic Field Lines Are Parallel

The magnetic force acting on a moving charged particle is the cross product of the 

velocity vector and the magnetic field vector, so when these two vectors are parallel, the 

magnetic force acting on them is zero.

When the Velocity Vector and Magnetic Field Lines Are Neither 

Perpendicular nor Parallel

The easiest way to deal with a velocity vector that is neither parallel nor perpendicular to 

a magnetic field is to break it into components that are perpendicular and parallel to the 

magnetic field.

The x-component of the velocity vector illustrated above will move with circular motion. 

Applying the right-hand rule, we find that the force will be directed downward into the 

page if the particle has a positive charge. The y-component of the velocity vector will 

experience no magnetic force at all, because it is moving parallel to the magnetic field 

lines. As a result, the charged particle will move in a helix pattern, spiraling around while 

also moving up toward the top of the page. Its trajectory will look something like this:

If the particle has a positive charge it will move in a counterclockwise direction, and if it 

has a negative charge it will move in a clockwise direction.
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EXAMPLE

A particle of mass kg has a negative charge of –10 C. It moves in a clockwise 

circular pattern of radius 2 m at a speed of m/s. What is the magnitude and direction 
of the magnetic field acting upon it?

We know the velocity, mass, charge, and radius of the orbit of the particle. These four 

quantities are related to magnetic field strength, B, in the equation r = mv/qB. By 

rearranging this equation, we can solve for B:

Now we just need to determine the direction of the magnetic field. To find the direction, 

apply the right-hand rule in reverse: point your thumb in the direction of the force—

toward the center of the circle—and then stretch your fingers in the direction of the 

velocity. When you curl your fingers around, they will point out of the page. However, 

because the particle has a negative charge, the magnetic field has the opposite direction—

into the page.

Magnetic Fields and Electric Fields Overlapping
There’s no reason why a magnetic field and an electric field can’t operate in the same 

place. Both will exert a force on a moving charge. Figuring out the total force exerted on 

the charge is pretty straightforward: you simply add the force exerted by the magnetic 

field to the force exerted by the electric field. Let’s look at an example.

EXAMPLE
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A particle with a positive charge of 3 C moves upward at a speed of 10 m/s. It passes 
simultaneously through a magnetic field of 0.2 T directed into the page and an electric field 
of 2 N/C directed to the right. How is the motion of the particle affected?

Answering this question is a matter of calculating the force exerted by the magnetic field 

and the force exerted by the electric field, and then adding them together. The force 

exerted by the magnetic field is:

Using the right-hand-rule, we find that this force is directed to the left. The force exerted 

by the electric field is:

This force is directed to the right. In sum, we have one force of 6 N pushing the particle to 

the left and one force of 6 N pushing the particle to the right. The net force on the particle 

is zero, so it continues toward the top of the page with a constant velocity of 10 m/s.

Magnetic Force on Current-Carrying Wires

Since an electric current is just a bunch of moving charges, wires carrying current will be 

subject to a force when in a magnetic field. When dealing with a current in a wire, we 

obviously can’t use units of q and v. However, qv can equally be expressed in terms of Il, 

where I is the current in a wire, and l is the length, in meters, of the wire—both qv and Il 

are expressed in units of C · m/s. So we can reformulate the equation for the magnitude of 

a magnetic force in order to apply it to a current-carrying wire:

In this formulation, is the angle the wire makes with the magnetic field. We determine 

the direction of the force by using the right-hand rule between the direction of the current 

and that of the magnetic field.
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EXAMPLE

In the figure above, a magnetic field of T is applied locally to one part of an 

electric circuit with a 5 resistor and a voltage of 30 V. The length of wire to which the 
magnetic field is applied is 2 m. What is the magnetic force acting on that stretch of wire?

We are only interested in the stretch of wire on the right, where the current flows in a 

downward direction. The direction of current is perpendicular to the magnetic field, 

which is directed into the page, so we know the magnetic force will have a magnitude of F 

= IlB, and will be directed to the right.

We have been told the magnetic field strength and the length of the wire, but we need to 

calculate the current in the wire. We know the circuit has a voltage of 30 V and a 

resistance of 5 , so calculating the current is just a matter of applying Ohm’s Law: 

Now that we know the current, we can simply plug numbers into the equation for the 

force of a magnetic field on a current-carrying wire:

The Magnetic Field Due to a Current

So far we have discussed the effect a magnetic field has on a moving charge, but we have 

not discussed the reverse: the fact that a moving charge, or current, can generate a 

magnetic field. There’s no time like the present, so let’s get to it.

The magnetic field created by a single moving charge is actually quite complicated, and is 

not covered by SAT II Physics. However, the magnetic field created by a long straight wire 

carrying a current, I, is relatively simple, and is fair game for SAT II Physics. The 

magnetic field strength is given by:
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The constant is called the permeability of free space, and in a vacuum it has a 

value of about N/A2.

For SAT II Physics, it’s not important to memorize this equation exactly. It’s more 

important to note that the strength of the magnetic field is proportional to the strength of 

the current and is weaker the farther it is from the wire.

The direction of the magnetic field lines are determined by an alternate version of the 

right-hand rule: if you held the wire with your thumb pointing in the direction of the 

current, the magnetic field would make a circular path around the wire, in the direction 

that your fingers curl.

EXAMPLE

Two parallel long straight wires carrying a current I stand a distance r apart. What force 
does one wire exert on the other?

Consider the magnetic field created by the bottom wire as it affects the top wire. 

According to the right-hand rule, the magnetic field will point out of the page, and will 

have a strength of B = ( I)/(2πr).

The force exerted by the bottom wire on the top wire is F = IlB. If we substitute in for B 

the equation we derived above, we find the force per unit length is:

Using the right-hand rule once more, we find that the force pulls the top wire down 

toward the bottom wire.

We can apply the same equations to find that the top wire pulls the bottom wire up. In 

other words, the two wires generate magnetic fields that pull one another toward each 
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other. Interestingly, the fact that each wire exerts an opposite force on the other is further 

evidence of Newton’s Third Law.

Key Formulas
Magnetic 

Force on a 
Moving 
Charge

Magnitude of 
the Magnetic 

Force on a 
Moving 
Charge

Radius of the 
Circle 

Described by 
a Charged 

Particle 
Moving 

Perpendicula
r to a 

Magnetic 
Field

Magnetic 
Force on a 

Current
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Practice Questions
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1. . The pointer on a compass is the north pole of a small magnet. If a compass were placed 
next to a bar magnet, as shown above, in what direction would the pointer point?

(A)

(B)

(C)

(D)

(E)

2. . A positively charged particle in a uniform magnetic field moves in a circular path in the 
clockwise direction, parallel to the plane of the page. In what direction do the magnetic 
field lines point? 

(A) Out of the page

(B) Into the page

(C) To the left

(D) To the right

(E) In a clockwise pattern parallel to the plane of the page

3. . What should one do to maximize the magnitude of the magnetic force acting on a charged 
particle moving in a magnetic field?

  I. Maximize the strength of the magnetic field
 II. Minimize the particle’s velocity
III. Ensure that the particle is moving in the same direction as the magnetic field lines

(A) I only

(B) I and II only

(C) I and III only

(D) II and III only

(E) I, II, and III
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4. . What is the magnetic force experienced by a negatively charged particle of 1.0 C that is 

moving upward at a velocity of 2.0 103 m/s in a magnetic field of strength 4.0 
10–4 T, directed into the page? 

(A) 0.8 N to the left

(B) 0.8 N to the right

(C) 2.0 10–7 N to the left

(D) 2.0 10–7 N to the right

(E) 5.0 106 N to the left

5. . A charged particle is moving in a circular orbit in a magnetic field. If the strength of the 
magnetic field doubles, how does the radius of the particle’s orbit change? 

(A) It is quartered

(B) It is halved

(C) It is unchanged

(D) It is doubled

(E) It is quadrupled

6. . Which of the following is not a possible trajectory of a charged particle in a uniform 
magnetic field? 

(A)

(B)

(C)

(D)

(E)
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7. . A positively charged particle of 2.0 C moves upward into an area where both a magnetic 

field and an electric field are acting. The magnetic field has a magnitude of 4.0 10–4 

T and the electric field has a magnitude of 0.1 N/C. At what velocity must the particle be 
moving if it is not deflected when it enters this area? 

(A) 4.0 10–3 m/s

(B) 125 m/s

(C) 250 m/s

(D) 500 m/s

(E) The particle will be deflected to the left regardless of its velocity

8. . A current-carrying wire in a magnetic field is subject to a magnetic force. If the current 
in the wire is doubled, what happens to the magnetic force acting on the wire? 

(A) It is quartered

(B) It is halved

(C) It is unchanged

(D) It is doubled

(E) It is quadrupled
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9. . Two wires carry current in opposite directions. Which of the following graphs represents 
the magnetic force acting on each wire? 

(A)

(B)

(C)

(D)

(E) There is no net force acting on either wire

10. . A current-carrying wire passes through a uniform magnetic field, as shown above. At 
which point is the magnetic field the strongest? 

(A) A

(B) B

(C) C

(D) D

(E) The magnetic field strength is uniform throughout

Explanations
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1.      B     

To solve this problem, it is helpful to remember how the magnetic field lines around a bar magnet look:

The arrows of the magnetic field lines show the direction toward which a north magnetic pole would be 

attracted. Since the compass needle is a south magnetic pole, it’s attracted in the opposite direction of the 

field lines.

Note that the correct answer is B, and not E. The magnet points along the magnetic field lines, and not 

straight at the north pole of the magnet.

2.      A     

This question demands that we apply the right-hand rule backward. Force, velocity, and magnetic strength 

are related by the formula . Since the particle is positively charged, q is positive, and the F 

vector will point in the same direction as the vector.

Let’s imagine the particle at the six o’clock position. That means the particle is moving to the left, so stretch 

your fingers in the leftward direction. It’s moving under the influence of a centripetal magnetic force that 

pulls it in a circle. This force is directed toward the center of the circle, so point your thumb upward toward 

the center of the imaginary clock face. To do this, you’ll have to have your palm facing up, and you’ll find 

that when you curl your fingers around, they point out of the plane of the page. That’s the direction of the 

magnetic field lines.

3.      A     

The magnetic force experienced by a moving particle is given by the formula . Since F is 

proportional to the cross product of v and B, we can maximize F by maximizing v and B, and by ensuring 

that v and B are perpendicular to one another. According to these requirements, only statement I will 

maximize the magnetic force: both statements II and III will serve to minimize the magnetic force.

4.      B     

Magnetic force is related to charge, velocity, and magnetic field strength by the formula . 

Since the velocity vector and the magnetic field strength vector are perpendicular, we can calculate the 

magnitude of the magnetic force quite easily:
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The minus sign in the answer signifies the fact that we are dealing with a negatively charged particle. That 

means that the force is in the opposite direction of the vector. We can determine the direction of this 

vector using the right-hand rule: point your fingers upward in the direction of the v vector and curl them 

downward in the direction of the B vector; your thumb will be pointing to the left. Since we’re dealing with a 

negatively charged particle, it will experience a force directed to the right.

5.      B     

If the particle is moving in a circular orbit, its velocity is perpendicular to the magnetic field lines, and so the 

magnetic force acting on the particle has a magnitude given by the equation F = qvB. Since this force pulls 

the particle in a circular orbit, we can also describe the force with the formula for centripetal force: F = 

mv2/r. By equating these two formulas, we can get an expression for orbital radius, r, in terms of magnetic 

field strength, B:

Since magnetic field strength is inversely proportional to orbital radius, doubling the magnetic field strength 

means halving the orbital radius.

6.      D     

When a charged particle moves in the direction of the magnetic field lines, it experiences no magnetic force, 

and so continues in a straight line, as depicted in A and B. When a charged particle moves perpendicular to 

the magnetic field lines, it moves in a circle, as depicted in C. When a charged particle has a trajectory that 

is neither perfectly parallel nor perfectly perpendicular to the magnetic field lines, it moves in a helix pattern, 

as depicted in E. However, there are no circumstances in which a particle that remains in a uniform magnetic 

field goes from a curved trajectory to a straight trajectory, as in D.

7.      C     

The electric field will pull the charged particle to the left with a force of magnitude F = qE. The magnetic field 

will exert a force of magnitude F = qvB. The direction of this force can be determined using the right-hand 

rule: extend your fingers upward in the direction of the velocity vector, then point them out of the page in 

the direction of the magnetic field vector. You will find your thumb is pointing to the right, and so a positively 

charged particle will experience a magnetic force to the right.
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If the particle is to move at a constant velocity, then the leftward electric force must be equal in magnitude 

to the rightward magnetic force, so that the two cancel each other out:

8.      D     

The magnetic force, F, due to a magnetic field, B, on a current-carrying wire of current I and length l has a 

magnitude F = IlB. Since F is directly proportional to I, doubling the current will also double the force.

9.      B     

Each wire exerts a magnetic force on the other wire. Let’s begin by determining what force the lower wire 

exerts on the upper wire. You can determine the direction of the magnetic field of the lower wire by pointing 

the thumb of your right hand in the direction of the current, and wrapping your fingers into a fist. This shows 

that the magnetic field forms concentric clockwise circles around the wire, so that, at the upper wire, the 

magnetic field will be coming out of the page. Next, we can use the right-hand rule to calculate the direction 

of the force on the upper wire. Point your fingers in the direction of the current of the upper wire, and then 

curl them upward in the direction of the magnetic field. You will find you thumb pointing up, away from the 

lower wire: this is the direction of the force on the upper wire.

If you want to be certain, you can repeat this exercise with the lower wire. The easiest thing to do, however, 

is to note that the currents in the two wires run in opposite directions, so whatever happens to the upper 

wire, the reverse will happen to the lower wire. Since an upward force is exerted on the upper wire, 

downward force will be exerted on the lower wire. The resulting answer, then, is B. 

10.      C     

There are two magnetic fields in this question: the uniform magnetic field and the magnetic field generated 

by the current-carrying wire. The uniform magnetic field is the same throughout, pointing into the page. The 

magnetic field due to the current-carrying wire forms concentric clockwise circles around the wire, so that 

they point out of the page above the wire and into the page below the wire. That means that at points A and 

B, the upward magnetic field of the current-carrying wire will counteract the downward uniform magnetic 

field. At points C and D, the downward magnetic field of the current-carrying wire will complement the 

downward uniform magnetic field. Since the magnetic field due to a current-carrying wire is stronger at 

points closer to the wire, the magnetic field will be strongest at point C.

Electromagnetic Induction
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CHARGES MOVING IN A MAGNETIC FIELD create an electric field, just as charges 

moving in an electric field create a magnetic field. This is called electromagnetic 

induction. Induction provides the basis of everyday technology like transformers on 

power lines and electric generators.

On average, SAT II Physics asks only one question about electromagnetic induction. 

However, less than half of the test takers usually get this question right, so if you get the 

hang of this material, you’ll be separating yourself from the crowd. On the whole, this 

question will be qualitative, with only a minimum of calculation involved.

Motional Emf

Consider the bar in the figure below. It has length l and moves at speed v to the right in 

magnetic field B, which is directed into the page.

The field exerts a magnetic force on the free electrons in the bar. That force is 

: using the right-hand rule, you will find that the vector is directed 

upward along the bar, but since electrons are negatively charged, the magnetic force 

acting upon them is directed downward. As a result, electrons flow to the bottom of the 

bar, and the bottom becomes negatively charged while the top becomes positively 

charged.

The separation of charge in the rod creates an electric field within the bar in the 

downward direction, since the top of the bar is positively charged and the bottom of the 

bar is negatively charged. The force from the electric field, , pulls negative 

charges upward while the force from the magnetic field pulls negative charges downward. 

Initially, the magnetic field is much stronger than the electric field, but as more electrons 

are drawn to the bottom of the bar, the electric field becomes increasingly stronger. When 

the two fields are of equal strength, the forces balance one another out, halting the flow of 

electrons in the bar. This takes place when:

Induced Current and Motional Emf
The electric field in the metal bar causes a potential difference of V = El = vBl. If the bar 

slides along metal rails, as in the figure below, a closed circuit is set up with current 
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flowing in the counterclockwise direction, up the bar and then around the metal rail back 

to the bottom of the bar. This is called an induced current.

The moving bar is a source of an electromotive force, called motional emf, since the 

emf is generated by the motion of the bar.

The force is defined as:

The magnitude of the induced emf can be increased by increasing the strength of the 

magnetic field, moving the bar faster, or using a longer bar.

EXAMPLE

A bar of length 10 cm slides along metal rails at a speed of 5 m/s in a magnetic field of 0.1 
T. What is the motional emf induced in the bar and rails?

Now that we’ve defined motional emf, solving this problem is simply a matter of plugging 

numbers into the appropriate equation:

Faraday’s Law

Moving a conductor through a magnetic field is just one way of inducing an electric 

current. A more common way of inducing current, which we will examine now, is by 

changing the magnetic flux through a circuit.

Magnetic Flux
The magnetic flux, , through an area, A, is the product of the area and the magnetic 

field perpendicular to it: 

The A vector is perpendicular to the area, with a magnitude equal to the area in question. 

If we imagine flux graphically, it is a measure of the number and length of flux lines 

passing through a certain area. 
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The unit of flux is the weber (Wb), where 1 Wb = 1 T · m2.

Changing Magnetic Flux

As we will see shortly, is more important than : our interest is in how flux changes, 

not in its fixed value. The formula for magnetic flux suggests that there are three ways of 

changing magnetic flux:

1. Change the magnetic field strength: By sliding a permanent magnet back 

and forth, the magnetic field in a certain area will fluctuate. We will look at this 

phenomenon a bit later in this chapter. 

2. Change the area: When a bar slides on rails in a magnetic field, as in our 

discussion of motional emf, the square bounded by the bar and the rails gets 

larger. As it grows, the number of field lines passing through it increases, and 

thus the flux increases as the bar moves. 

3. Rotate the area, changing the angle between the area and the 

magnetic field: When the area is perpendicular to the magnetic field, the 

magnetic flux will simply be the product of the magnitudes of the area and the 

magnetic field strength. However, as you rotate the area so that it is at an angle to 

the magnetic field, fewer field lines will pass through it, and so the magnetic flux 

will decrease.

EXAMPLE

A square with sides of length 2 m is perpendicular to a magnetic field of strength 10 T. If 
the square is rotated by 60Âº, what is the change in magnetic flux through the square? 

First, let’s calculate the flux through the square before it’s rotated. Because it’s 

perpendicular to the magnetic field, the flux is simply the product of the area of the 

square and the magnetic field strength:
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Next, let’s calculate the flux through the square after it’s rotated. Now we have to take 

into account the fact that the square is at an angle of 60º:

So the change in magnetic flux is :

The magnetic flux decreases because, as the square is rotated, fewer magnetic field lines 

can pass through it.

Faraday’s Law
We have seen earlier that a bar sliding along rails is a source of induced emf. We have 

also seen that it is a source of changing magnetic flux: as it moves, it changes the area 

bounded by the bar and the rails. The English scientist Michael Faraday discovered that 

this is no coincidence: induced emf is a measure of the change in magnetic flux over time.

This formula is called Faraday’s Law.

Equivalence of Faraday’s Law with E = vBl 

The earlier example of a metal bar rolling along tracks to induce a current is just a 

particular case of the more general Faraday’s Law. If the bar is moving at a constant 

velocity v, at which it covers a distance in a time , then:

Because is the same thing as , we get:

Lenz’s Law
Faraday’s Law tells us that a change in magnetic flux induces a current in a loop of 

conducting material. However, it doesn’t tell us in what direction that current flows. 

According to Lenz’s Law, the current flows so that it opposes the change in magnetic 

flux by creating its own magnetic field. Using the right-hand rule, we point our thumb in 

the opposite direction of the change in magnetic flux, and the direction in which our 

fingers wrap into a fist indicates the direction in which current flows.

Lenz’s Law is included in Faraday’s Law by introducing a minus sign:

EXAMPLE
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The square in the previous example, with sides of length 2 m and in a magnetic field of 
strength 10 T, is rotated by 60Âº in the course of 4 s. What is the induced emf in the square? 
In what direction does the current flow?

We established in the previous example that the change in flux as the square is rotated is 

–20 Wb. Knowing that it takes 4 seconds to rotate the square, we can calculate the 

induced emf using Lenz’s Law:

As for determining the direction of the current, we first need to determine the direction of 

the change in magnetic flux. From the diagram we saw in the previous example, we see 

that the magnetic field lines, B, move in the upward direction. Because we rotated the 

square so that it is no longer perpendicular to the field lines, we decreased the magnetic 

flux. Saying that the magnetic flux changed by –20 Wb is equivalent to saying that the 

flux changed by 20 Wb in the downward direction.

The direction of the current must be such that it opposes the downward change in flux. In 

other words, the current must have an “upward” direction. Point the thumb of your right 

hand upward and wrap your fingers into a fist, and you will find that they curl in a 

counterclockwise direction. This is the direction of the current flow.

Conservation of Energy
Lenz’s Law is really a special case of the conservation of energy. Consider again the bar 

sliding on rails. What would happen if the induced current did not oppose the change in 

flux? 

Since the current flows counterclockwise, the current in the bar flows toward the top of 

the page. Thus, the magnetic field exerts a leftward force on the bar, opposing the 

external force driving it to the right. If the current flowed in the other direction, the force 

on the bar would be to the right. The bar would accelerate, increasing in speed and kinetic 

energy, without any input of external energy. Energy would not be conserved, and we 

know this cannot happen.

Changing the Flux by Changing the Magnetic Field
So far, we have changed the magnetic flux in two ways: by increasing the size of the 

circuit and by rotating the circuit in a constant magnetic field. A third way is to keep the 

circuit still and change the field. If a permanent magnet moves toward a loop of wire, the 

magnetic field at the loop changes. 
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Remember that field lines come out of the north (N) pole of a magnet. As the magnet 

moves closer to the loop, the flux in the downward direction increases. By Lenz’s Law, the 

current must then be in the upward direction. Using the right-hand rule, we find that the 

current will flow counterclockwise as viewed from above.

As the middle of the magnet passes through the loop, the flux decreases in the downward 

direction. A decrease in the magnitude of the downward flux is the same as a change in 

flux in the upward direction, so at this point the change in flux is upward, and the current 

will change direction and flow clockwise.

It doesn’t matter whether the magnet or the loop is moving, so long as one is moving 

relative to the other.
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Applications

Electromagnetic induction is important to humans because it is useful. SAT II Physics has 

been known to ask questions about real-world applications of electromagnetic induction. 

The two most common applications are the electric generator and the transformer.

The Electric Generator 
The electric generator, sometimes called a “dynamo,” is a noisy favorite at outdoor 

events that need electricity. It uses the principle of electromagnetic induction to convert 

mechanical energy—usually in the form of a gas-powered motor—into electrical energy. A 

coil in the generator rotates in a magnetic field. As the magnetic flux through the coil 

changes, it induces an emf, creating a current. 

The Transformer
The transformer converts current of one voltage to current of another voltage. A simple 

transformer consists of two coils wrapped around an iron core. Transformers rely on the 

property of mutual induction: the change in current in one coil induces an emf in 

another coil. The coil with the applied current is called the primary coil, and the coil with 

the induced emf is called the secondary coil.

The induced emf is related to the emf in the primary coil by the number of turns in each 

coil:

Outside a power plant, a “step-up” transformer, whose primary coil has fewer turns than 

its secondary coil, increases the voltage (emf) of the current that is transported along 

power lines. Then, before the power enters your house, a “step-down” transformer, whose 

secondary coil has fewer turns than its primary coil, reduces the voltage. The higher 

voltage on power lines cutting across the countryside allows more electricity to be 

transported quickly to urban centers. The lower voltage within your house renders the 

electricity safer.

Key Formulas
Motional 

Emf
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Practice Questions

1. . A bar magnet is moving downward, south pole first, toward a loop of wire. Which of the 
following best describes the current induced in the wire?

(A) Clockwise, as viewed from above

(B) Counterclockwise, as viewed from above

(C) The current alternates

(D) There is no current induced in the wire

(E) The direction of the current cannot be determined from the information given here
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2. . A bar of length 2 cm slides along metal rails at a speed of 1 cm/s. The bar and rails are in 
a magnetic field of 2 T, pointing out of the page. What is the induced emf in the bar and 
rails?

(A)
V

(B)
V

(C)
V

(D)
V

(E)
V

3. . A wire in the shape of an equilateral triangle with sides of length 1.00 m sits in a 
magnetic field of 2.00 T, pointing to the right. What is the magnitude of the magnetic 
flux through the triangle?

(A) 0 Wb

(B) 1.00 Wb

(C) 1.73 Wb

(D) 2.00 Wb

(E) 3.46 Wb

4. . A device that transforms mechanical energy into electrical energy is called a:

(A) Transformer

(B) Inductor

(C) Motor

(D) Galvanometer

(E) Generator
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5. . A wire carrying 5.0 V is applied to a transformer. The primary coil has 5 turns and the 
secondary coil has 10 turns. What is the emf induced in the secondary coil?

(A) 0.50 V

(B) 5.0 V

(C) 10 V

(D) 50 V

(E) 100 V

Explanations

1.      A     

The magnet moving downward creates a downward magnetic flux. Using the right-hand rule, we find that the 

current related to a downward flux flows clockwise.

2.      C     

The induced emf, , from a bar of length l moving along rails at a speed v in a magnetic field of magnitude 

B is given by the formula = vBl. Since we are given the values for v, B, and l, this is simply a matter of 

plugging numbers into a formula. Remember that we need to convert to units of meters: 

3.      A     

Magnetic flux is given by the formula = = BA cos , where B is the magnetic field strength, A is the 

area, and is the angle between the magnetic field vector and a vector pointing perpendicular to the area. 

In this case, the value of is 90º, and since cos 90º = 0, the magnetic flux through the area is zero.

A more intuitive way of thinking about this problem is to see that, since the magnetic field lines pass across 

the triangle rather than through it, there are no magnetic field lines passing through the area, and so the 

flux is equal to zero.

4.      E     

A generator, also called a dynamo, is normally run by a gas-powered motor that rotates a coil in a magnetic 

field, thereby inducing emf and generating an electric current.
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5.      C     

The relationship between the voltage in a primary coil and in a secondary coil is given by the formula:

Since the primary has an emf of 5.0 V, and the secondary has twice as many turns as the primary, the 

secondary has an emf of 10 V.

Waves 

WAVE PHENOMENA OCCUR ALMOST anywhere there is periodic motion. We have 

already encountered such periodic motion in the back-and-forth movement of pendulums 

and masses on a spring and with the cyclic orbits of objects in a gravitational field. The 

physics of waves is also central in explaining how light and sound work. Anything from a 

violin string to a drum skin to a wine glass can make a sound, suggesting that there are 

few things in the world that cannot produce wave phenomena. We find waves in the air, 

in our bodies, in earthquakes, in computers—and, if we’re surfers, at the beach.

Periodic Motion

We’ve already covered some of the basics of periodic motion with our discussion of a 

mass on a spring back in Chapter 5. When the end of a spring is stretched or compressed, 

the spring exerts a force so as to return the mass at its end to its equilibrium position. 

The maximum displacement of the mass from its equilibrium position during each cycle 

is the amplitude of the oscillation. One cycle of periodic motion is completed each time 

the spring returns to its starting point, and the time it takes to complete one cycle is the 

period, T, of oscillation. The frequency, f, of the spring’s motion is the number of 

cycles it completes per second. A high frequency means each period is relatively short, so 

frequency and period are inversely proportional:

Frequency is measured in units of hertz (Hz), where 1 Hz = 1 cycle/second. The unit of 

hertz is technically defined as an inverse second (s–1) and can be applied to any process 

that measures how frequently a certain event recurs.

We can summarize all of these concepts in an equation describing the position of the 

mass at the end of a spring, x, as a function of time, t:
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In this equation,  A is the amplitude, f is the frequency, and T is the period of the 

oscillation. It is useful to think of each of these quantities in terms of a graph plotting the 

mass’s displacement over time.

The graph shows us an object moving back and forth withina distance of 1 m from its 

equilibrium position. It reaches its equilibrium position of x = 0 at t = 0, t = 2, and t = 4.

Note that one cycle is completed not at t = 2 but at t = 4. Though the object is at the same 

position, x = 0, at t = 2 as it was at t = 0, it is moving in the opposite direction. At the 

beginning of a new cycle, both the position and the velocity must be identical to the 

position and velocity at the beginning of the previous cycle. 

Wave Motion

Because both masses suspended on a spring and waves at the beach exhibit periodic 

motion, we can use much of the same vocabulary and mathematical tools to describe 

both. However, there is a significant difference: waves are extended in space, while a 

mass on a spring just oscillates back and forth in one place.

The Basics
A familiar and concrete example of wave motion is the “wave” spectators create at 

sporting events by standing up and sitting down at appropriate intervals. Each person 

stands up just as that person’s neighbor stands up, transmitting a form of energy all the 

way around the stadium. There are two things worth noting about how this works:

1. Waves are transmitted through a medium: The energy and the “wave” are 

both created by the successive action of people standing up and down. If there 

were no people in the stadium, no wave could exist and no energy could be 

transmitted. We call the people at the stadium, the water at the beach, the air 

molecules transmitting sound, etc., the medium through which these waves are 

transmitted. 

2. The medium itself is not propagated: For the “wave” to work, each person 

in the stadium only needs to stand up and sit back down. The “wave” travels 

around the stadium, but the people do not. 
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Think of waves as a means of transmitting energy over a distance. One object can 

transmit energy to another object without either object, or anything in between them, 

being permanently displaced. For instance, if a friend shouts to you across a room, the 

sound of your friend’s voice is carried as a wave of agitated air particles. However, no air 

particle has to travel the distance between your friend and your ear for you to hear the 

shout. The air is a medium, and it serves to propagate sound energy without itself having 

to move. Waves are so widespread and important because they transmit energy through 

matter without permanently displacing the matter through which they move.

Crests, Troughs, and Wavelength
Waves travel in crests and troughs, although, for reasons we will discuss shortly, we 

call them compressions and rarefactions when dealing with longitudinal waves. 

The terms crest and trough are used in physics just as you would use them to refer to 

waves on the sea: the crest of a wave is where the wave is at its maximum positive 

displacement from the equilibrium position, and the trough is where it is at its maximum 

negative displacement. Therefore, the displacement at the crest is the wave’s amplitude, 

while the displacement at the trough is the negative amplitude. There is one crest and one 

trough in every cycle of a wave. The wavelength, , of a traveling wave is the distance 

between two successive crests or two successive troughs.

Wave Speed
The period of oscillation, T, is simply the time between the arrival of successive wave 

crests or wave troughs at a given point. In one period, then, the crests or troughs travel 

exactly one wavelength. Therefore, if we are given the period and wavelength, or the 

frequency and wavelength, of a particular wave, we can calculate the wave speed, v:

EXAMPLE

274



Ernst attaches a stretched string to a mass that oscillates up and down once every half 
second, sending waves out across the string. He notices that each time the mass reaches the 
maximum positive displacement of its oscillation, the last wave crest has just reached a bead 
attached to the string 1.25 m away. What are the frequency, wavelength, and speed of the 
waves?

DETERMINING FREQUENCY:

The oscillation of the mass on the spring determines the oscillation of the string, so the 

period and frequency of the mass’s oscillation are the same as those of the string. The 

period of oscillation of the string is T = 0.5 s, since the string oscillates up and down once 

every half second. The frequency is just the reciprocal of the period: f = 1/T = 2 Hz. 

DETERMINING WAVELENGTH:

The maximum positive displacement of the mass’s oscillation signifies a wave crest. Since 

each crest is 1.25 m apart, the wavelength, , is 1.25 m.

DETERMINING WAVE SPEED:

Given the frequency and the wavelength, we can also calculate the wave speed: 

m/s.

Phase
Imagine placing a floating cork in the sea so that it bobs up and down in the waves. The 

up-and-down oscillation of the cork is just like that of a mass suspended from a spring: it 

oscillates with a particular frequency and amplitude.

Now imagine extending this experiment by placing a second cork in the water a small 

distance away from the first cork. The corks would both oscillate with the same frequency 

and amplitude, but they would have different phases: that is, they would each reach the 

highest points of their respective motions at different times. If, however, you separated 

the two corks by an integer multiple of the wavelength—that is, if the two corks arrived at 

their maximum and minimum displacements at the same time—they would oscillate up 

and down in perfect synchrony. They would both have the same frequency and the same 

phase.

Transverse Waves and Longitudinal Waves
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There are two major kinds of waves: transverse waves and longitudinal waves. The 

medium transmitting transverse waves oscillates in a direction perpendicular to the 

direction the wave is traveling. A good example is waves on water: the water oscillates up 

and down while transmitting a wave horizontally. Other common examples include a 

wave on a string and electromagnetic waves. By contrast, the medium transmitting 

longitudinal waves oscillates in a direction parallel to the direction the wave is traveling. 

The most commonly discussed form of longitudinal waves is sound.

Transverse Waves: Waves on a String
Imagine—or better yet, go grab some twine and set up—a length of string stretched 

between two posts so that it is taut. Each point on the string is just like a mass on a 

spring: its equilibrium position lies on the straight line between the two posts, and if it is 

plucked away from its resting position, the string will exert a force to restore its 

equilibrium position, causing periodic oscillations. A string is more complicated than a 

simple mass on a spring, however, since the oscillation of each point influences nearby 

points along the string. Plucking a string at one end causes periodic vibrations that 

eventually travel down the whole length of the string. Now imagine detaching one end of 

the string from the pole and connecting it to a mass on a spring, which oscillates up and 

down, as in the figure below. The oscillation at one end of the string creates waves that 

propagate, or travel, down the length of the string. These are called, appropriately, 

traveling waves. Don’t let this name confuse you: the string itself only moves up and 

down, returning to its starting point once per cycle. The wave travels, but the medium—

the string, in this case—only oscillates up and down.

The speed of a wave depends on the medium through which it is traveling. For a stretched 

string, the wave speed depends on the force of tension, , exerted by the pole on the 

string, and on the mass density of the string, :

The formula for the wave speed is:

EXAMPLE

276



A string is tied to a pole at one end and 100 g mass at the other, and wound over a pulley. 
The string’s mass is 100 g, and it is 2.5 m long. If the string is plucked, at what speed do the 
waves travel along the string? How could you make the waves travel faster? Assume the 
acceleration due to gravity is 10 m/s2.

Since the formula for the speed of a wave on a string is expressed in terms of the mass 

density of the string, we’ll need to calculate the mass density before we can calculate the 

wave speed.

The tension in the string is the force of gravity pulling down on the weight, 

The equation for calculating the speed of a wave on 

a string is:

This equation suggests two ways to increase the speed of the waves: increase the tension 

by hanging a heavier mass from the end of the string, or replace the string with one that is 

less dense. 

Longitudinal Waves: Sound
While waves on a string or in water are transverse, sound waves are longitudinal. The 

term longitudinal means that the medium transmitting the waves—air, in the case of 

sound waves—oscillates back and forth, parallel to the direction in which the wave is 

moving. This back-and-forth motion stands in contrast to the behavior of transverse 

waves, which oscillate up and down, perpendicular to the direction in which the wave is 

moving.

Imagine a slinky. If you hold one end of the slinky in each of your outstretched arms and 

then jerk one arm slightly toward the other, you will send a pulse across the slinky toward 

the other arm. This pulse is transmitted by each coil of the slinky oscillating back and 

forth parallel to the direction of the pulse.
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When the string on a violin, the surface of a bell, or the paper cone in a stereo speaker 

oscillates rapidly, it creates pulses of high air pressure, or compressions, with low 

pressure spaces in between, called rarefactions. These compressions and rarefactions are 

the equivalent of crests and troughs in transverse waves: the distance between two 

compressions or two rarefactions is a wavelength.

Pulses of high pressure propagate through the air much like the pulses of the slinky 

illustrated above, and when they reach our ears we perceive them as sound. Air acts as 

the medium for sound waves, just as string is the medium for waves of displacement on a 

string. The figure below is an approximation of sound waves in a flute—each dark area 

below indicates compression and represents something in the order of 1024 air molecules.

Loudness, Frequency, Wavelength, and Wave Speed

Many of the concepts describing waves are related to more familiar terms describing 

sound. For example, the square of the amplitude of a sound wave is called its loudness, 

or volume. Loudness is usually measured in decibels. The decibel is a peculiar unit 

measured on a logarithmic scale. You won’t need to know how to calculate decibels, but it 

may be useful to know what they are.

The frequency of a sound wave is often called its pitch. Humans can hear sounds with 

frequencies as low as about 90 Hz and up to about 15,000 Hz, but many animals can hear 

sounds with much higher frequencies. The term wavelength remains the same for sound 

waves. Just as in a stretched string, sound waves in air travel at a certain speed. This 

speed is around 343 m/s under normal circumstances, but it varies with the temperature 

and pressure of the air. You don’t need to memorize this number: if a question involving 

the speed of sound comes up on the SAT II, that quantity will be given to you. 

Superposition

Suppose that two experimenters, holding opposite ends of a stretched string, each shake 

their end of the string, sending wave crests toward each other. What will happen in the 

middle of the string, where the two waves meet? Mathematically, you can calculate the 

displacement in the center by simply adding up the displacements from each of the two 

waves. This is called the principle of superposition: two or more waves in the same 

place are superimposed upon one another, meaning that they are all added together. 

Because of superposition, the two experimenters can each send traveling waves down the 

string, and each wave will arrive at the opposite end of the string undistorted by the 
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other. The principle of superposition tells us that waves cannot affect one another: one 

wave cannot alter the direction, frequency, wavelength, or amplitude of another wave.

Destructive Interference
Suppose one of the experimenters yanks the string downward, while the other pulls up by 

exactly the same amount. In this case, the total displacement when the pulses meet will 

be zero: this is called destructive interference. Don’t be fooled by the name, though: 

neither wave is destroyed by this interference. After they pass by one another, they will 

continue just as they did before they met.

Constructive Interference
On the other hand, if both experimenters send upward pulses down the string, the total 

displacement when they meet will be a pulse that’s twice as big. This is called 

constructive interference.

Beats
You may have noticed the phenomenon of interference when hearing two musical notes 

of slightly different pitch played simultaneously. You will hear a sort of “wa-wa-wa” 

sound, which results from repeated cycles of constructive interference, followed by 

destructive interference between the two waves. Each “wa” sound is called a beat, and 

the number of beats per second is given by the difference in frequency between the two 

interfering sound waves:
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EXAMPLE

Modern orchestras generally tune their instruments so that the note “A” sounds at 440 Hz. If 
one violinist is slightly out of tune, so that his “A” sounds at 438 Hz, what will be the time 
between the beats perceived by someone sitting in the audience?

The frequency of the beats is given by the difference in frequency between the out-of-tune 

violinist and the rest of the orchestra: Thus, there will 

be two beats per second, and the period for each beat will be T = 1/f = 0.5 s.

Standing Waves and Resonance

So far, our discussion has focused on traveling waves, where a wave travels a certain 

distance through its medium. It’s also possible for a wave not to travel anywhere, but 

simply to oscillate in place. Such waves are called, appropriately, standing waves. A 

great deal of the vocabulary and mathematics we’ve used to discuss traveling waves 

applies equally to standing waves, but there are a few peculiarities of which you should be 

aware.

Reflection
If a stretched string is tied to a pole at one end, waves traveling down the string will 

reflect from the pole and travel back toward their source. A reflected wave is the mirror 

image of its original—a pulse in the upward direction will reflect back in the downward 

direction—and it will interfere with any waves it encounters on its way back to the source. 

In particular, if one end of a stretched string is forced to oscillate—by tying it to a mass on 

a spring, for example—while the other end is tied to a pole, the waves traveling toward the 

pole will continuously interfere with their reflected copies. If the length of the string is a 

multiple of one-half of the wavelength, , then the superposition of the two waves will 

result in a standing wave that appears to be still. 
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Nodes
The crests and troughs of a standing wave do not travel, or propagate, down the string. 

Instead, a standing wave has certain points, called nodes, that remain fixed at the 

equilibrium position. These are points where the original wave undergoes complete 

destructive interference with its reflection. In between the nodes, the points that oscillate 

with the greatest amplitude—where the interference is completely constructive—are 

called antinodes. The distance between successive nodes or antinodes is one-half of the 

wavelength, .

Resonance and Harmonic Series
The strings on musical instruments vibrate as standing waves. A string is tied down at 

both ends, so it can only support standing waves that have nodes at both ends, and thus 

can only vibrate at certain given frequencies. The longest such wave, called the 

fundamental, or resonance, has two nodes at the ends and one antinode at the center. 

Since the two nodes are separated by the length of the string, L, we see that the 

fundamental wavelength is . The string can also support standing waves with 

one, two, three, or any integral number of nodes in between the two ends. This series of 

standing waves is called the harmonic series for the string, and the wavelengths in the 

series satisfy the equation , or:

In the figure above, the fundamental is at the bottom, the first member of the harmonic 

series, with n = 1. Each successive member has one more node and a correspondingly 

shorter wavelength.

EXAMPLE
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An empty bottle of height 0.2 m and a second empty bottle of height 0.4 m are placed next 
to each other. One person blows into the tall bottle and one blows into the shorter bottle. 
What is the difference in the pitch of the two sounds? What could you do to make them 
sound at the same pitch?

Sound comes out of bottles when you blow on them because your breath creates a series 

of standing waves inside the bottle. The pitch of the sound is inversely proportional to the 

wavelength, according to the equation . We know that the wavelength is directly 

proportional to the length of the standing wave: the longer the standing wave, the greater 

the wavelength and the lower the frequency. The tall bottle is twice as long as the short 

bottle, so it vibrates at twice the wavelength and one-half the frequency of the shorter 

bottle. To make both bottles sound at the same pitch, you would have to alter the 

wavelength inside the bottles to produce the same frequency. If the tall bottle were half-

filled with water, the wavelength of the standing wave would decrease to the same as the 

small bottle, producing the same pitch.

Pitch of Stringed Instruments
When violinists draw their bows across a string, they do not force the string to oscillate at 

any particular frequency, the way the mass on a spring does. The friction between the 

bow and the string simply draws the string out of its equilibrium position, and this causes 

standing waves at all the different wavelengths in the harmonic series. To determine what 

pitches a violin string of a given length can produce, we must find the frequencies 

corresponding to these standing waves. Recalling the two equations we know for the wave 

speed, and , we can solve for the frequency, , for any term, n, in the 

harmonic series. A higher frequency means a higher pitch.

You won’t need to memorize this equation, but you should understand the gist of it. This 

equation tells you that a higher frequency is produced by (1) a taut string, (2) a string 

with low mass density, and (3) a string with a short wavelength. Anyone who plays a 

stringed instrument knows this instinctively. If you tighten a string, the pitch goes up (1); 

the strings that play higher pitches are much thinner than the fat strings for low notes 

(2); and by placing your finger on a string somewhere along the neck of the instrument, 

you shorten the wavelength and raise the pitch (3).
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The Doppler Effect

So far we have only discussed cases where the source of waves is at rest. Often, waves are 

emitted by a source that moves with respect to the medium that carries the waves, like 

when a speeding cop car blares its siren to alert onlookers to stand aside. The speed of the 

waves, v, depends only on the properties of the medium, like air temperature in the case 

of sound waves, and not on the motion of the source: the waves will travel at the speed of 

sound (343 m/s) no matter how fast the cop drives. However, the frequency and 

wavelength of the waves will depend on the motion of the wave’s source. This change in 

frequency is called a Doppler shift.Think of the cop car’s siren, traveling at speed , 

and emitting waves with frequency f and period T = 1/f. The wave crests travel outward 

from the car in perfect circles (spheres actually, but we’re only interested in the effects at 

ground level). At time T after the first wave crest is emitted, the next one leaves the siren. 

By this time, the first crest has advanced one wavelength, , but the car has also traveled 

a distance of . As a result, the two wave crests are closer together than if the cop car 

had been stationary.

The shorter wavelength is called the Doppler-shifted wavelength, given by the formula 

. The Doppler-shifted frequency is given by the formula: 

Similarly, someone standing behind the speeding siren will hear a sound with a longer 

wavelength, , and a lower frequency, . 

You’ve probably noticed the Doppler effect with passing sirens. It’s even noticeable with 

normal cars: the swish of a passing car goes from a higher hissing sound to a lower 

hissing sound as it speeds by. The Doppler effect has also been put to valuable use in 

astronomy, measuring the speed with which different celestial objects are moving away 

from the Earth.

EXAMPLE
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A cop car drives at 30 m/s toward the scene of a crime, with its siren blaring at a frequency 
of 2000 Hz. At what frequency do people hear the siren as it approaches? At what frequency 
do they hear it as it passes? The speed of sound in the air is 343 m/s.

As the car approaches, the sound waves will have shorter wavelengths and higher 

frequencies, and as it goes by, the sound waves will have longer wavelengths and lower 

frequencies. More precisely, the frequency as the cop car approaches is:

The frequency as the cop car drives by is:

Key Formulas
Frequency 
of Periodic 
Oscillation

Speed of 
Waves on a 

String

Wave 
Speed

Wavelengt
h for the 

Harmonic 
Series

Frequency 
for the 

Harmonic 
Series

Beat 
Frequency

Doppler 
Shift
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Practice Questions

1. . Which of the following exhibit simple harmonic motion?

  I. A pendulum
 II. A mass attached to a spring
III. A ball bouncing up and down, in the absence of friction

(A) I only

(B) II only

(C) III only 

(D) I and II only

(E) I, II, and III

2. .
If a wave has frequency Hz and speed v = 100 m/s, what is its wavelength?

(A)
m

(B)
m

(C)
m

(D)
m

(E)
m

3. . Two strings of equal length are stretched out with equal tension. The second string is four 
times as massive as the first string. If a wave travels down the first string with velocity v, 
how fast does a wave travel down the second string?

(A)

v

(B)

v

(C) v

(D) 2v

(E) 4v
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4. . A piano tuner has a tuning fork that sounds with a frequency of 250 Hz. The tuner strikes 
the fork and plays a key that sounds with a frequency of 200 Hz. What is the frequency 
of the beats that the piano tuner hears?

(A) 0 Hz

(B) 0.8 Hz

(C) 1.25 Hz

(D) 50 Hz

(E) 450 Hz

5. .
How is the lowest resonant frequency, , for a tube with one closed end related to the 

lowest resonant frequency, , for a tube with no closed ends?

(A)

(B)

(C)

(D)

(E)
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6. . Two pulses travel along a string toward each other, as depicted above. Which of the 
following diagrams represents the pulses on the string at a later time?

(A)

(B)

(C)

(D)

(E)

7. . What should a piano tuner do to correct the sound of a string that is flat, that is, it plays 
at a lower pitch than it should?

(A) Tighten the string to make the fundamental frequency higher

(B) Tighten the string to make the fundamental frequency lower

(C) Loosen the string to make the fundamental frequency higher

(D) Loosen the string to make the fundamental frequency lower

(E) Find a harmonic closer to the desired pitch

Questions 8 and 9 refer to a police car with its siren on, traveling at a velocity toward a 
person standing on a street corner. As the car approaches, the person hears the sound at a 

frequency of . Take the speed of sound to be v.
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8. . What is the frequency produced by the siren?

(A)

(B)

(C)

(D)

(E)

9. . What is the wavelength of the sound produced by the siren?

(A)

(B)

(C)

(D)

(E)

10. .

An ambulance driving with velocity where is the speed of sound, emits a siren 

with a frequency of . What is the frequency heard by a stationary observer toward 
whom the ambulance is driving?

(A)

(B)

(C)

(D)

(E)

Explanations
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1.      B     

Simple harmonic motion is defined as the oscillation of an object about an equilibrium position where the 

restoring force acting on the object is directly proportional to its displacement from the equilibrium position.

Though we often treat pendulum motion as simple harmonic motion, this is in fact a simplification. The 

restoring force acting on a pendulum is mg sin , where is the angle of displacement from the equilibrium 

position. The restoring force, then, is directly proportional to sin , and not to the pendulum bob’s 

displacement, . At small angles, , so we can approximate the motion of a pendulum as simple 

harmonic motion, but the truth is more complicated.

The motion of a mass attached to a spring is given by Hooke’s Law, F = –kx. Since the restoring force, F, is 

directly proportional to the mass’s displacement, x, a mass on a spring does indeed exhibit simple harmonic 

motion.

There are two forces acting on a bouncy ball: the constant downward force of mg, and the occasional elastic 

force that sends the ball back into the air. Neither of these forces is proportional to the ball’s displacement 

from any point, so, despite the fact that a bouncy ball oscillates up and down, it does not exhibit simple 

harmonic motion.

Of the three examples given above, only a mass on a spring exhibits simple harmonic motion, so the correct 

answer is B.

2.      B     

The frequency, speed, and wavelength of a wave are related by the formula v = f. Solving for , we find:

3.      B     

The speed v of a wave traveling along a string of mass m, length l, and tension T is given by: . 

This formula comes from the relationship between v, T, and string density m (namely, ) combined 

with the fact that density . Since velocity is inversely proportional to the square root of the mass, 

waves on a string of quadrupled mass will be traveling half as fast.

4.      D     
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The frequency of the beats produced by two dissonant sounds is simply the difference between the two 

frequencies. In this case, the piano tuner will hear beats with a frequency of 250 Hz – 200 Hz = 50 Hz.

5.      B     

A tube closed at one end can support a standing wave with a node at the closed end and an antinode at the 

open end. A tube open at both ends can support a standing wave with antinodes at both ends.

As the figure shows, the wavelength for a standing wave in a tube closed at one end is twice the wavelength 

for a standing wave in a tube open at both ends. Since frequency is inversely proportional to wavelength, the 

frequency for a standing wave in a tube closed at one end is half the frequency of a standing wave in a tube 

open at both ends.

6.      E     

When two waves move toward one another, they pass through each other without one affecting the other. 

While both waves are in the same place, they will superimpose to form a single wave that is the sum of the 

two waves, but once they have passed one another, they will continue on their trajectory unaffected.

7.      A     

The easiest way to solve this problem is through simple intuition. When you tighten a string, it plays at a 

higher pitch, and when you loosen a string, it plays at a lower pitch. Pitch and frequency are the same thing, 

so in order to raise the pitch of the piano string, the tuner has to tighten the string, thereby raising its 

fundamental frequency.

8.      A     

In general, the frequency heard by the person is given by the formula:
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where and are the frequency heard by the person and the velocity of the person, respectively, and 

and are the frequency and the velocity of the police siren, respectively. Since the police car is traveling 

toward the person, the person will hear a higher frequency than that which the siren actually produces, so 

> . We also know that = 0. If > , then the fraction in the equation above must be greater 

than one, so the denominator should read v – , and not v + . The resulting formula is:

9.      C     

Wavelength is related to velocity and frequency by the formula = v/f. In the previous question, we 

determined the frequency produced by the siren, so we can simply plug this formula into the formula for 

wavelength:

10.      D     

Generally speaking, the frequency heard by an observer is the frequency emitted at the source, multiplied by 

a factor of (  – )/(  – v), where is the speed of sound, is the velocity of the observer, and v is 

the velocity of the source of the sound. Solving for , the frequency heard by the observer, is just a matter 

of plugging the appropriate numbers into the formula:

Common intuition should save you from answering A, B, or C: when an ambulance moves toward you, its 

siren sounds higher than it actually is.
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Optics

HAVING STUDIED WAVE PHENOMENA generally, let’s take a look at the special case 

of electromagnetic waves. EM waves are transverse traveling waves produced by the 

oscillations of an electric field and a magnetic field. Because they are not transmitted by 

any material medium, as sound waves are through air molecules, EM waves can travel 

through the vacuum of space and give us valuable information about the universe beyond 

the Earth’s atmosphere. Electromagnetic waves play a great many roles in our lives: we 

use EM waves of different wavelengths to microwave our dinner, to transmit radio 

signals, and to x-ray for broken bones. Most important, we are only able to see because 

our eyes can detect the EM waves that make up the spectrum of visible light.

Optics is the study of visible light, and how light can be manipulated to produce visual 

images.

The Electromagnetic Spectrum

Electromagnetic waves travel through a vacuum at the speed of light, m/s. 

As we’ll see in the next chapter, this is the fastest speed there is: anything faster resides at 

present only in the realm of theoretical speculation. Because the speed of EM waves is 

constant, we can calculate a wave’s frequency if we know its wavelength, and vice versa:

Wavelength and frequency are the only qualities that distinguish one kind of EM wave 

from another. As a result, we can list all the kinds of EM waves on a one-dimensional 

graph called the electromagnetic spectrum.
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A higher frequency—and thus a shorter wavelength—corresponds to a wave with more 

energy. Though all waves travel at the same speed, those with a higher frequency oscillate 

faster, and a wave’s oscillations are associated with its energy.

Visible light is the part of the electromagnetic spectrum between roughly 400 and 700 

nanometers (1 nm = m). When EM waves with these wavelengths—emitted by the 

sun, light bulbs, and television screens, among other things—strike the retina at the back 

of our eye, the retina sends an electrical signal to our brain that we perceive as color.

Classical Optics

“Classical” optics refers to those facts about optics that were known before the adoption 

of the wave model of light in the nineteenth century. In Newton’s time, light was studied 

as if it had only particle properties—it moves in a straight line, rebounds off objects it 

bumps into, and passes through objects that offer minimal resistance. While this 

approximation of light as a particle can’t explain some of the phenomena we will look at 

later in this chapter, it’s perfectly adequate for dealing with most commonplace 

phenomena, and will serve as the basis for our examination of mirrors and lenses.

Reflection
When people think reflection, they generally think of mirrors. However, everything that 

we see is capable of reflecting light: if an object couldn’t reflect light, we wouldn’t be able 

to see it. Mirrors do present a special case, however. Most objects absorb some light, 

reflecting back only certain frequencies, which explains why certain objects are of certain 

colors. Further, most objects have a rough surface—even paper is very rough on a 

molecular level—and so the light reflected off them deflects in all different directions. 

Mirrors are so smooth that they reflect all the light that strikes them in a very predictable 

and convenient way.

We call the ray of light that strikes a reflective surface an incident ray, and the ray that 

bounces back a reflected ray. The angle of incidence, , is the angle between the 

normal—the line perpendicular to the reflective surface—and the incident ray. Similarly, 

the angle of reflection, , is the angle between the normal and the reflected ray.

293



The law of reflection tells us that angle of incidence and angle of reflection are equal:

The reflection of a ray of light works in just the same way as a ball bouncing off a wall, 

except gravity has no noticeable effect on light rays.

Refraction
In addition to reflecting light, many surfaces also refract light: rather than bouncing off 

the surface, some of the incident ray travels through the surface, but at a new angle. We 

are able to see through glass and water because much of the light striking these 

substances is refracted and passes right through them.

Light passing from one substance into another will almost always reflect partially, so 

there is still an incident ray and a reflected ray, and they both have the same angle to the 

normal. However, there is also a third ray, the refracted ray, which lies in the same 

plane as the incident and reflected rays. The angle of the refracted ray will not be the 

same as the angle of the incident and reflected rays. As a result, objects that we see in a 

different medium—a straw in a glass of water, for instance—appear distorted because the 

light bends when it passes from one medium to another.
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The phenomenon of refraction results from light traveling at different speeds in different 

media. The “speed of light” constant c is really the speed of light in a vacuum: when light 

passes through matter, it slows down. If light travels through a substance with velocity v, 

then that substance has an index of refraction of n = c/v. Because light always travels 

slower through matter than through a vacuum, v is always less than or equal to c, so 

. For transparent materials, typical values of n are quite low: = 1.0, = 1.3, and 

= 1.6. Because it is the presence of matter that slows down light, denser materials 

generally have higher indices of refraction.

A light ray passing from a less dense medium into a denser medium will be refracted 

toward the normal, and a light ray passing from a denser medium into a less dense 

medium will be refracted away from the normal. For example, water is denser than air, so 

the light traveling out of water toward our eyes is refracted away from the normal. When 

we look at a straw in a glass of water, we see the straw where it would be if the light had 

traveled in a straight line.
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Given a ray traveling from a medium with index of refraction into a medium with index 

of refraction , Snell’s Law governs the relationship between the angle of incidence 

and the angle of refraction:

EXAMPLE

A ray of light passes from a liquid medium into a gas medium. The incident ray has an angle 
of 30Âº with the normal, and the refracted ray has an angle of 60Âº with the normal. If light 

travels through the gas at a speed of m/s, what is the speed of light through the 
liquid medium? sin 30Âº = 0.500 and sin 60Âº = 0.866.

We know that the index of refraction for a substance, n, gives the ratio of the speed of 

light in a vacuum to the speed of light in that substance. Therefore, the index of 

refraction, , in the liquid medium is related to the speed of light, , in that medium by 

the equation = c/ ; similarly, the index of refraction, , in the gas medium is related 

to the speed of light, , in that medium by the equation = c/ . The ratio between 

and is:

We can calculate the ratio between and using Snell’s Law:
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Since we know that the ratio of /  is equal to the ration of / , and since we know 

the value for , we can now calculate the value for :

Given m/s, we can also calculate that the index of refraction for the liquid 

substance is 2.1, while the index of refraction for the gas substance is 1.2.

Total Internal Reflection

The sine of an angle is always a value between –1 and 1, so for certain values of , , 

and , Snell’s Law admits no solution for . For example, suppose medium 1 is glass, 

medium 2 is air and = 87º. Then the angle of refraction is given by sin  = 1.6, for 

which there is no solution. Mathematicians have not yet invented a physical angle with 

this property, so physicists just shrug their shoulders and conclude that there is no 

refracted ray, which is supported by observation. This phenomenon is known as total 

internal reflection.

For two given media, the critical angle, , is defined as the smallest angle of incidence 

for which total internal reflection occurs. From Snell’s Law, we know that sin  = sin

/ , so refraction occurs only if sin  / ≤ 1. Setting the left side of that equation 

to equal 1, we can derive the critical angle:

EXAMPLE

The index of refraction for water is 1.3 and the index of refraction for air is 1.0. What is the 
maximum angle of incidence at which a ray of light can pass from water into the air?

If the angle of incidence is greater than the critical angle, then the ray of light will not be 

refracted into the air. The maximum angle of incidence, then, is the critical angle.
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Dispersion
There is one subtlety of refraction that we’ve overlooked: the index of refraction depends 

slightly on the wavelength of the incident light. When a mixture of waves of different 

wavelength refract, each constituent color refracts differently—the different constituents 

disperse. Generally speaking, light of a longer wavelength and lower frequency refracts 

less than light of a shorter wavelength and higher frequency, so .

The phenomenon of dispersion explains why we see a rainbow when sunlight refracts off 

water droplets in the air. The white light of the sun is actually a mixture of a multitude of 

different wavelengths. When this white light passes through water droplets in the air, the 

different wavelengths of light are refracted differently. The violet light is refracted at a 

steeper angle than the red light, so the violet light that reaches our eyes appears to be 

coming from higher in the sky than the red light, even though they both come from the 

same ray of sunlight. Because each color of light is refracted at a slightly different angle, 

these colors arrange themselves, one on top of the other, in the sky.

We find the same phenomenon with light shone into a glass prism.

Optical Instruments

The reflection and refraction we’ve dealt with so far have focused only on light interacting 

with flat surfaces. Lenses and curved mirrors are optical instruments designed to focus 

light in predictable ways. While light striking a curved surface is more complicated than 

the flat surfaces we’ve looked at already, the principle is the same. Any given light ray 

only strikes an infinitesimally small portion of the lens or mirror, and this small portion 

taken by itself is roughly flat. As a result, we can still think of the normal as the line 

perpendicular to the tangent plane.
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The four basic kinds of optical instruments—the only instruments that will be tested on 

SAT II Physics—are concave mirrors, convex mirrors, convex (or converging) lenses, and 

concave (or diverging) lenses. If you have trouble remembering the difference between 

concave and convex, remember that, like caves, concave mirrors and lenses curve inward. 

Convex lenses and mirrors bulge outward.

General Features of Mirrors and Lenses
Much of the vocabulary we deal with is the same for all four kinds of optical instruments. 

Before we look at the peculiarities of each, let’s look at some of the features they all share 

in common.

The diagram above shows a “ray tracing” image of a concave mirror, showing how a 

sample ray of light bounces off it. Though we will take this image as an example, the same 

principles and vocabulary apply to convex mirrors and to lenses as well.

The principal axis of a mirror or lens is a normal that typically runs through the center 

of the mirror or lens. The vertex, represented by V in the diagram, is the point where the 

principal axis intersects the mirror or lens.

The only kind of curved mirrors that appear on SAT II Physics are spherical mirrors, 

meaning they look like someone sliced off a piece of a sphere. Spherical mirrors have a 

center of curvature, represented by C in the diagram, which is the center of the sphere 

of which they are a slice. The radius of that sphere is called the radius of curvature, R.

All rays of light that run parallel to the principal axis will be reflected—or refracted in the 

case of lenses—through the same point, called the focal point, and denoted by F on the 

diagram. Conversely, a ray of light that passes through the focal point will be reflected 

parallel to the principal axis. The focal length, f, is defined as the distance between the 
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vertex and the focal point. For spherical mirrors, the focal length is half the radius of 

curvature, f = R/2.

Concave Mirrors
Suppose a boy of height h stands at a distance d in front of a concave mirror. By tracing 

the light rays that come from the top of his head, we can see that his reflection would be 

at a distance from the mirror and it would have a height . As anyone who has looked 

into a spoon will have guessed, the image appears upside down.

The image at is a real image: as we can see from the ray diagram, the image is formed 

by actual rays of light. That means that, if you were to hold up a screen at position , the 

image of the boy would be projected onto it. You may have noticed the way that the 

concave side of a spoon can cast light as you turn it at certain angles. That’s because 

concave mirrors project real images.

You’ll notice, though, that we were able to create a real image only by placing the boy 

behind the focal point of the mirror. What happens if he stands in front of the focal point?

The lines of the ray diagram do not converge at any point in front of the mirror, which 

means that no real image is formed: a concave mirror can only project real images of 

objects that are behind its focal point. However, we can trace the diverging lines back 

behind the mirror to determine the position and size of a virtual image. Like an 

ordinary flat mirror, the image appears to be standing behind the mirror, but no light is 

focused on that point behind the mirror. With mirrors generally, an image is real if it is in 

front of the mirror and virtual if it is behind the mirror. The virtual image is right side up, 

at a distance from the vertex, and stands at a height .
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You can test all this yourself with the right kind of spoon. As you hold it at a distance 

from your face, you see your reflection upside down. As you slowly bring it closer, the 

upside-down reflection becomes blurred and a much larger reflection of yourself 

emerges, this time right side up. The image changes from upside down to right side up as 

your face crosses the spoon’s focal point.

Convex Mirrors

The focal point of a convex mirror is behind the mirror, so light parallel to the principal 

axis is reflected away from the focal point. Similarly, light moving toward the focal point 

is reflected parallel to the principal axis. The result is a virtual, upright image, between 

the mirror and the focal point.

You’ve experienced the virtual image projected by a convex mirror if you’ve ever looked 

into a polished doorknob. Put your face close to the knob and the image is grotesquely 

enlarged, but as you draw your face away, the size of the image diminishes rapidly.

The Two Equations for Mirrors and Lenses
So far we’ve talked about whether images are real or virtual, upright or upside down. 

We’ve also talked about images in terms of a focal length f, distances d and , and 

heights h and . There are two formulas that relate these variables to one another, and 

that, when used properly, can tell whether an image is real or virtual, upright or upside 

down, without our having to draw any ray diagrams. These two formulas are all the math 

you’ll need to know for problems dealing with mirrors and lenses.

First Equation: Focal Length

The first equation relates focal length, distance of an object, and distance of an image:
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Values of d, , and f are positive if they are in front of the mirror and negative if they are 

behind the mirror. An object can’t be reflected unless it’s in front of a mirror, so d will 

always be positive. However, as we’ve seen, f is negative with convex mirrors, and is 

negative with convex mirrors and with concave mirrors where the object is closer to the 

mirror than the focal point. A negative value of signifies a virtual image, while a 

positive value of signifies a real image.

Note that a normal, flat mirror is effectively a convex mirror whose focal point is an 

infinite distance from the mirror, since the light rays never converge. Setting 1/f = 0, we 

get the expected result that the virtual image is the same distance behind the mirror as 

the real image is in front.

Second Equation: Magnification

The second equation tells us about the magnification, m, of an image:

Values of are positive if the image is upright and negative if the image is upside down. 

The value of m will always be positive because the object itself is always upright.

The magnification tells us how large the image is with respect to the object: if , then 

the image is larger; if , the image is smaller; and if m = 1, as is the case in an 

ordinary flat mirror, the image is the same size as the object.

Because rays move in straight lines, the closer an image is to the mirror, the larger that 

image will appear. Note that will have a positive value with virtual images and a 

negative value with real images. Accordingly, the image appears upright with virtual 

images where m is positive, and the image appears upside down with real images where 

m is negative.

EXAMPLE

A woman stands 40 cm from a concave mirror with a focal length of 30 cm. How far from 
the mirror should she set up a screen in order for her image to be projected onto it? If the 
woman is 1.5 m tall, how tall will her image be on the screen?

HOW FAR FROM THE MIRROR SHOULD SHE SET UP A SCREEN 

IN ORDER FOR HER IMAGE TO BE PROJECTED ONTO IT?

The question tells us that d = 40 cm and f = 30 cm. We can simply plug these numbers 

into the first of the two equations and solve for , the distance of the image from the 

mirror:
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Because is a positive number, we know that the image will be real. Of course, we could 

also have inferred this from the fact that the woman sets up a screen onto which to 

project the image.

HOW TALL WILL HER IMAGE BE ON THE SCREEN?

We know that d = 40 cm, and we now know that = 120 cm, so we can plug these two 

values into the magnification equation and solve for m:

The image will be three times the height of the woman, or m tall. Because 

the value of m is negative, we know that the image will be real, and projected upside 

down.

Convex Lenses
Lenses behave much like mirrors, except they use the principle of refraction, not 

reflection, to manipulate light. You can still apply the two equations above, but this 

difference between mirrors and lenses means that the values of and f for lenses are 

positive for distances behind the lens and negative for distances in front of the lens. As 

you might expect, d is still always positive. 

Because lenses—both concave and convex—rely on refraction to focus light, the principle 

of dispersion tells us that there is a natural limit to how accurately the lens can focus 

light. For example, if you design the curvature of a convex lens so that red light is focused 

perfectly into the focal point, then violet light won’t be as accurately focused, since it 

refracts differently. 

A convex lens is typically made of transparent material with a bulge in the center. 

Convex lenses are designed to focus light into the focal point. Because they focus light 

into a single point, they are sometimes called “converging” lenses. All the terminology 

regarding lenses is the same as the terminology we discussed with regard to mirrors—the 

lens has a vertex, a principal axis, a focal point, and so on. 

Convex lenses differ from concave mirrors in that their focal point lies on the opposite 

side of the lens from the object. However, for a lens, this means that f > 0, so the two 

equations discussed earlier apply to both mirrors and lenses. Note also that a ray of light 

that passes through the vertex of a lens passes straight through without being refracted at 

an angle.
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In this diagram, the boy is standing far enough from the lens that d > f. As we can see, the 

image is real and on the opposite side of the lens, meaning that is positive. 

Consequently, the image appears upside down, so and m are negative. If the boy were 

now to step forward so that d < f, the image would change dramatically:

Now the image is virtual and behind the boy on the same side of the lens, meaning that 

is negative. Consequently, the image appears upright, so and m are positive.

Concave Lenses

A concave lens is designed to divert light away from the focal point, as in the diagram. 

For this reason, it is often called a “diverging” lens. As with the convex lens, light passing 

through the vertex does not bend. Note that since the focal point F is on the same side of 

the lens as the object, we say the focal length f is negative.
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As the diagram shows us, and as the two equations for lenses and mirrors will confirm, 

the image is virtual, appears on the same side of the lens as the boy does, and stands 

upright. This means that is negative and that and m are positive. Note that h > , so 

m < 1.

Summary
There’s a lot of information to absorb about mirrors and lenses, and remembering which 

rules apply to which kinds of mirrors and lenses can be quite difficult. However, this 

information is all very systematic, so once you grasp the big picture, it’s quite easy to sort 

out the details. In summary, we’ll list three things that may help you grasp the big 

picture:

1. Learn to draw ray diagrams: Look over the diagrams of the four kinds of 

optical instruments and practice drawing them yourself. Remember that light 

refracts through lenses and reflects off mirrors. And remember that convex lenses 

and concave mirrors focus light to a point, while concave lenses and convex 

mirrors cause light to diverge away from a point. 

2. Memorize the two fundamental equations: You can walk into SAT II 

Physics knowing only the two equations for lenses and mirrors and still get a 

perfect score on the optical instruments questions, so long as you know how to 

apply these equations. Remember that f is positive for concave mirrors and 

convex lenses, and negative for convex mirrors and concave lenses. 

3. Memorize this table: Because we love you, we’ve put together a handy table 

that summarizes everything we’ve covered in this section of the text.

Optical Instrument Value 
of d ´

Real or 
virtual?

Value 
of f 

Upright or 
upside down?

Mirrors ( and f are 
positive in front of 
mirror)

Concave d 
> f 

+ Real + Upside down

Concave d 
< f 

– Virtual + Upright

Convex – Virtual – Upright

Lenses ( and f are 
positive on far side of 
lens)

Convex d 
> f 

+ Real + Upside down

Convex d 
< f 

– Virtual + Upright

Concave – Virtual – Upright

Note that when is positive, the image is always real and upside down, and when is 

negative, the image is always virtual and upright.
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SAT II Physics questions on optical instruments are generally of two kinds. Either there 

will be a quantitative question that will expect you to apply one of the two equations 

we’ve learned, or there will be a qualitative question asking you to determine where light 

gets focused, whether an image is real or virtual, upright or upside down, etc.

Wave Optics

As you may know, one of the weird things about light is that some of its properties can be 

explained only by treating it as a wave, while others can be explained only by treating it as 

a particle. The classical physics that we have applied until now deals only with the particle 

properties of light. We will now take a look at some phenomena that can only be 

explained with a wave model of light.

Young’s Double-Slit Experiment
The wave theory of light came to prominence with Thomas Young’s double-slit 

experiment, performed in 1801. We mention this because it is often called “Young’s 

double-slit experiment,” and you’d best know what SAT II Physics means if it refers to 

this experiment. The double-slit experiment proves that light has wave properties 

because it relies on the principles of constructive interference and destructive 

interference, which are unique to waves.

The double-slit experiment involves light being shone on a screen with—you guessed it—

two very narrow slits in it, separated by a distance d. A second screen is set up a distance 

L from the first screen, upon which the light passing through the two slits shines.

Suppose we have coherent light—that is, light of a single wavelength , which is all 

traveling in phase. This light hits the first screen with the two parallel narrow slits, both 

of which are narrower than . Since the slits are narrower than the wavelength, the light 

spreads out and distributes itself across the far screen.
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At any point P on the back screen, there is light from two different sources: the two slits. 

The line joining P to the point exactly between the two slits intersects the perpendicular 

to the front screen at an angle .

We will assume that the two screens are very far apart—somewhat more precisely, that L 

is much bigger than d. For this reason, this analysis is often referred to as the “far-field 

approximation.” This approximation allows us to assume that angles and , formed by 

the lines connecting each of the slits to P, are both roughly equal to . The light from the 

right slit—the bottom slit in our diagram—travels a distance of l = d sin  more than the 

light from the other slit before it reaches the screen at the point P. 

As a result, the two beams of light arrive at P out of phase by d sin . If d sin  = (n + 1/2)

, where n is an integer, then the two waves are half a wavelength out of phase and will 

destructively interfere. In other words, the two waves cancel each other out, so no light 

hits the screen at P. These points are called the minima of the pattern.

On the other hand, if d sin  = n , then the two waves are in phase and constructively 

interfere, so the most light hits the screen at these points. Accordingly, these points are 

called the maxima of the pattern.
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Because the far screen alternates between patches of constructive and destructive 

interference, the light shining through the two slits will look something like this:
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Note that the pattern is brightest in the middle, where = 0. This point is called the 

central maximum. If you encounter a question regarding double-slit refraction on the 

test, you’ll most likely be asked to calculate the distance x between the central maximum 

and the next band of light on the screen. This distance, for reasons too involved to 

address here, is a function of the light’s wavelength ( ), the distance between the two 

slits (d), and the distance between the two screens (L): 

Diffraction
Diffraction is the bending of light around obstacles: it causes interference patterns such 

as the one we saw in Young’s double-slit experiment. A diffraction grating is a screen 

with a bunch of parallel slits, each spaced a distance d apart. The analysis is exactly the 

same as in the double-slit case: there are still maxima at d sin  = n  and minima at d sin 

= (n + 1/2) . The only difference is that the pattern doesn’t fade out as quickly on the 

sides.

Single-Slit Diffraction

You may also find single-slit diffraction on SAT II Physics. The setup is the same as with 

the double-slit experiment, only with just one slit. This time, we define d as the width of 

the slit and as the angle between the middle of the slit and a point P.

Actually, there are a lot of different paths that light can take to P—there is a path from 

any point in the slit. So really, the diffraction pattern is caused by the superposition of an 

infinite number of waves. However, paths coming from the two edges of the slit, since 

they are the farthest apart, have the biggest difference in phase, so we only have to 

consider these points to find the maxima and the minima.

Single-slit diffraction is nowhere near as noticeable as double-slit interference. The 

maximum at n = 0 is very bright, but all of the other maxima are barely noticeable. For 

this reason, we didn’t have to worry about the diffraction caused by both slits individually 

when considering Young’s experiment. 

Polarization

309



Light is a transverse wave, meaning that it oscillates in a direction perpendicular to the 

direction in which it is traveling. However, a wave is free to oscillate right and left or up 

and down or at any angle between the vertical and horizontal.

Some kinds of crystals have a special property of polarizing light, meaning that they 

force light to oscillate only in the direction in which the crystals are aligned. We find this 

property in the crystals in Polaroid disks.

The human eye can’t tell the difference between a polarized beam of light and one that 

has not been polarized. However, if polarized light passes through a second Polaroid disk, 

the light will be dimmed the more that second disk is out of alignment with the first. For 

instance, if the first disk is aligned vertically and the second disk is aligned horizontally, 

no light will pass through. If the second disk is aligned at a 45º angle to the vertical, half 

the light will pass through. If the second disk is also aligned vertically, all the light will 

pass through.

Wave Optics on SAT II Physics
SAT II Physics will most likely test your knowledge of wave optics qualitatively. That 

makes it doubly important that you understand the physics going on here. It won’t do you 

a lot of good if you memorize equations involving d sin  but don’t understand when and 

why interference patterns occur.
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One of the more common ways of testing wave optics is by testing your familiarity with 

different terms. We have encountered a number of terms—diffraction, polarization, 

reflection, refraction, interference, dispersion—all of which deal with different 

manipulations of light. You may find a question or two that describe a certain 

phenomenon and ask which term explains it.

EXAMPLE

Which of the following phenomena does NOT affect the direction of a wave of light?

(A) Dispersion

(B) Polarization

(C) Diffraction

(D) Reflection

(E) Refraction

The answer to the question is B. Polarization affects how a wave of light is polarized, but 

it does not change its direction. Dispersion is a form of refraction, where light is bent as it 

passes into a different material. In diffraction, the light waves that pass through a slit 

then spread out across a screen. Finally, in reflection, light bounces off an object, thereby 

changing its direction by as much as 180º. 

Key Formulas
Frequency of 

an 
Electromagnet

ic Wave

Law of 
Reflection

Index of 
Refraction

Snell’s Law

Critical Angle

Focal Length 
for a Spherical 

Concave 
Mirror

Mirror and 
Lens Equation
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Magnification

Maxima for 
Single Slit 

Diffraction

Minima for 
Single Slit 

Diffraction

Practice Questions

1. . Which of the following has the shortest wavelength?

(A) Red light

(B) Blue light

(C) Gamma rays

(D) X rays

(E) Radio waves

2. .
Orange light has a wavelength of m. What is its frequency? The speed of light is 

m/s.

(A)
Hz

(B)
Hz

(C)
Hz

(D)
Hz

(E)
Hz
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3. . When the orange light passes from air (n = 1) into glass (n = 1.5), what is its new 
wavelength?

(A)
m

(B)
m

(C)
m

(D)
m

(E)
m

4. . When a ray of light is refracted, the refracted ray does not have the same wavelength as 
the incident ray. Which of the following explain this phenomenon?

  I. Some of the energy of the incident ray is carried away by the reflected ray
 II. The boundary surface absorbs some of the energy of the incident ray
III. The incident and refracted rays do not travel with the same velocity

(A) I only

(B) II only

(C) III only

(D) I and II only

(E) I, II, and III

Questions 5 and 6 refer to a beam of light that passes through a sheet of plastic and out into 
the air. The angle the beam of light makes with the normal as it passes through the plastic is 

, and the angle the beam of light makes with the normal as it passes into the air is . The 
index of refraction for air is 1 and the index of refraction for plastic is 2.

5. .
What is the value of sin , in terms of ?

(A)

sin

(B)
2 sin

(C)
sin 2

(D)

sin 

(E)
4 sin
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6. . What is the minimum incident angle for which the light will undergo total internal 
reflection in the plastic?

(A)

sin–1  

(B)

sin–1 

(C) sin–1 2

(D) 0Âº

(E) 90Âº

7. . A person’s image appears on the far side of an optical instrument, upside down. What is 
the optical instrument?

(A) Concave mirror

(B) Convex mirror

(C) Plane mirror

(D) Concave lens

(E) Convex lens

8. . A physicist shines coherent light through an object, A, which produces a pattern of 
concentric rings on a screen, B. A is most likely:

(A) A polarization filter

(B) A single-slit

(C) A multiple-slit diffraction grating

(D) A prism

(E) A sheet with a pinhole
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9. . Sound waves do not exhibit polarization because, unlike light waves, they are not

(A) Longitudinal

(B) Coherent

(C) Dispersive

(D) Transverse

(E) Refractive

10. . The solar glare of sunlight bouncing off water or snow can be a real problem for 
drivers. The reflecting sunlight is horizontally polarized, meaning that the light waves 
oscillate at an angle of 90Âº to a normal line drawn perpendicular to the Earth. At what 
angle relative to this normal line should sunglasses be polarized if they are to be 
effective against solar glare?

(A) 0Âº

(B) 30Âº

(C) 45Âº

(D) 60Âº

(E) 90Âº

Explanations

1.      C     

Gamma rays have wavelengths shorter than m. Don’t confuse wavelength and frequency: gamma 

waves have a very high frequency, thus they have a short wavelength.

2.      C     

Wavelength and frequency are related by the formula . In the case of light, m/s, 

so we can solve for f with the following calculations:

3.      A     

When the wave enters the glass, its frequency does not change; otherwise, its color would change. However, 

the wave moves at a different speed, since the speed of light, v, in different substances is given by the 
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formula v = c/n, where c is the speed of light in a vacuum, and n is the index of refraction for the given 

substance. Since , we can also reason that . Further, we know that 

, so substituting these equations in, we get:

4.      C     

Statement I is true, but it doesn’t explain why a refracted ray should have a different wavelength. The fact 

that some of the incident ray is reflected means that the refracted ray will have a different amplitude, but it 

will not affect the frequency.

Statement II is false, and even if it were true, a change in energy would affect the frequency of the wave, 

not its wavelength.

Statement III correctly explains why refracted rays have different wavelengths from their incident rays. A 

light ray will maintain the same frequency, and hence color, when it is refracted. However, since the speed of 

light differs in different substances, and since the wavelength is related to the speed of light, v, by the 

formula , a change in the speed of light will mean a change in the wavelength as well.

5.      A     

Snell’s Law gives us the relationship between the indices of refraction and the angles of refraction of two 

different substances: sin  = sin . We know that , the index of refraction for air, is 1, and we 

know that , the index of refraction for plastic, is 2. That means we can solve for sin :

6.      B     

Total internal reflection occurs when the refracted ray is at an angle of 90º or greater, so that, effectively, the 

refracted ray doesn’t escape into the air. If = 90º, then sin  = 1, so by Snell’s Law:
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7.      E     

Only concave mirrors and convex lenses can produce images that appear upside down. However, concave 

mirrors produce these images on the same side of the mirror as the object, while convex lenses produce 

these images on the opposite side of the mirror from the object.

8.      E     

Whenever we see a pattern of maxima and minima, we know we are dealing with the phenomenon of 

diffraction, which rules out the possibility that A is a polarization filter or a prism. Both single- and multiple-

slit diffraction gratings tend to produce bands of light, but not concentric circles. The correct answer is E, the 

pinhole: light passing through the pinhole will spread out in concentric circles and will alternate between 

bright and dark patches to produce concentric rings.

9.      D     

Visible light can be polarized because it travels as a transverse wave, meaning that it oscillates perpendicular 

to the direction of its motion. Polarization affects the oscillation of transverse waves by forcing them to 

oscillate in one particular direction perpendicular to their motion. Sound waves, on the other hand, are 

longitudinal, meaning that they oscillate parallel to the direction of their motion. Since there is no component 

of a sound wave’s oscillation that is perpendicular to its motion, sound waves cannot be polarized.

10.      A     

The idea behind polarized sunglasses is to eliminate the glare. If the solar glare is all at a 90º angle to the 

normal line, sunglasses polarized at a 0º angle to this normal will not allow any of the glare to pass. Most 

other light is not polarized, so it will still be possible to see the road and other cars, but the distracting glare 

will cease to be a problem.

Modern Physics

ALMOST EVERYTHING WE’VE COVERED in the previous 15 chapters was known by 

the year 1900. Taken as a whole, these 15 chapters present a comprehensive view of 

physics. The principles we’ve examined, with a few elaborations, are remarkably accurate 

in their predictions and explanations for the behavior of pretty much every element of our 

experience, from a bouncy ball to a radio wave to a thunderstorm. No surprise, then, that 

the physicist Albert Michelson should have claimed in 1894 that all that remained for 

physics was the filling in of the sixth decimal place for certain constants.

But as it turns out, the discoveries of the past 100 years show us that most of our 

assumptions about the fundamental nature of time, space, matter, and energy are 
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mistaken. The “modern” physics of the past century focuses on phenomena so far beyond 

the scope of ordinary experience that Newton and friends can hardly be blamed for failing 

to notice them. Modern physics looks at the fastest-moving things in the universe, and at 

the smallest things in the universe. One of the remarkable facts about the technological 

advances of the past century is that they have brought these outer limits of nature in 

touch with palpable experience in very real ways, from the microchip to the atomic bomb.

One of the tricky things about modern physics questions on SAT II Physics is that your 

common sense won’t be of very much use: one of the defining characteristics of modern 

physics is that it goes against all common intuition. There are a few formulas you are 

likely to be tested on—E = hf in particular—but the modern physics questions generally 

test concepts rather than math. Doing well on this part of the test requires quite simply 

that you know a lot of facts and vocabulary.

Special Relativity

Special relativity is the theory developed by Albert Einstein in 1905 to explain the 

observed fact that the speed of light is a constant regardless of the direction or velocity of 

one’s motion. Einstein laid down two simple postulates to explain this strange fact, and, 

in the process, derived a number of results that are even stranger. According to his 

theory, time slows down for objects moving at near light speeds, and the objects 

themselves become shorter and heavier. The wild feat of imagination that is special 

relativity has since been confirmed by experiment and now plays an important role in 

astronomical observation.

The Michelson-Morley Experiment
As we discussed in the chapter on waves, all waves travel through a medium: sound 

travels through air, ripples travel across water, etc. Near the end of the nineteenth 

century, physicists were still perplexed as to what sort of medium light travels through. 

The most popular answer at the time was that there is some sort of invisible ether 

through which light travels. In 1879, Albert Michelson and Edward Morley made a very 

precise measurement to determine at what speed the Earth is moving relative to the 

ether. If the Earth is moving through the ether, they reasoned, the speed of light should 

be slightly different when hitting the Earth head-on than when hitting the Earth 

perpendicularly. To their surprise, the speed of light was the same in both directions.
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For people who believed that light must travel through an ether, the result of the 

Michelson-Morley experiment was like taking a ride in a boat and discovering that 

the boat crossed the wave crests at the same rate when it was driving against the waves as 

when it was driving in the same direction as the waves.

No one was sure what to make of the Michelson-Morley experiment until 1905, when 

Albert Einstein offered the two basic postulates of special relativity and changed forever 

the way we think about space and time. He asked all sorts of unconventional questions, 

such as, “What would I see if I were traveling at the speed of light?” and came up with all 

sorts of unconventional answers that experiment has since more or less confirmed.

The Basic Postulates of Special Relativity
Special relativity is founded upon two basic postulates, one a holdover from Newtonian 

mechanics and the other a seeming consequence of the Michelson-Morley experiment. As 

we shall see, these two postulates combined lead to some pretty counterintuitive results.

First Postulate

The laws of physics are the same in all inertial reference frames.

An inertial reference frame is one where Newton’s First Law, the law of inertia, holds. 

That means that if two reference frames are moving relative to one another at a constant 

velocity, the laws of physics in one are the same as in the other. You may have 

experienced this at a train station when the train is moving. Because the train is moving 

at a slow, steady velocity, it looks from a passenger’s point of view that the station is 

moving backward, whereas for someone standing on the platform, it looks as if the train 

is moving forward.
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Einstein’s first postulate tells us that neither the passenger on the train nor the person on 

the platform is wrong. It’s just as correct to say that the train is still and the Earth is 

moving as it is to say that the Earth is still and the train is moving. Any inertial reference 

frame is as good as any other.

Second Postulate

The speed of light in a vacuum is a constant—  m/s—in every reference frame, 

regardless of the motion of the observer or the source of the light.

This postulate goes against everything we’ve learned about vector addition. According to 

the principles of vector addition, if I am in a car moving at 20 m/s and collide with a wall, 

the wall will be moving at 20 m/s relative to me. If I am in a car moving at 20 m/s and 

collide with a car coming at me at 30 m/s, the other car will be moving at 50 m/s relative 

to me.

By contrast, the second postulate says that, if I’m standing still, I will measure light to be 

moving at m/s, or c, relative to me, and if I’m moving toward the source of light 

at one half of the speed of light, I will still observe the light to be moving at c relative to 

me.

By following out the consequences of this postulate—a postulate supported by the 

Michelson-Morley experiment—we can derive all the peculiar results of special relativity.

Time Dilation
One of the most famous consequences of relativity is time dilation: time slows down at 

high speeds. However, it’s important to understand exactly what this means. One of the 

consequences of the first postulate of special relativity is that there is no such thing as 

absolute speed: a person on a train is just as correct in saying that the platform is moving 

backward as a person on the platform is in saying that the train is moving forward. 

Further, both the person on the train and the person on the platform are in inertial 

reference frames, meaning that all the laws of physics are totally normal. Two people on a 

moving train can play table tennis without having to account for the motion of the train.

The point of time dilation is that, if you are moving relative to me in a very highspeed 

train at one-half the speed of light, it will appear to me that time is moving slower on 

board the train. On board the train, you will feel like time is moving at its normal speed. 

Further, because you will observe me moving at one-half the speed of light relative to 

you, you will think time is going more slowly for me. 
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What does this all mean? Time is relative. There is no absolute clock to say whether I am 

right or you are right. All the observations I make in my reference frame will be totally 

consistent, and so will yours.

We can express time dilation mathematically. If I were carrying a stopwatch and 

measured a time interval, , you would get a different measure, t, for the amount of time 

I had the stopwatch running.

The relation between these measures is: 

So suppose I am moving at one-half the speed of light relative to you. If I measure 10 

seconds on my stopwatch, you will measure the same time interval to be:

This equation has noticeable effects only at near light speeds. The difference between t 

and is only a factor of . This factor—which comes up so frequently in 

special relativity that it has been given its own symbol, —is very close to 1 unless v is a 

significant fraction of c. You don’t observe things on a train moving at a slower rate, since 

even on the fastest trains in the world, time slows down by only about 0.00005%.

Time Dilation and Simultaneity

Normally, we would think that if two events occur at the same time, they occur at the 

same time for all observers, regardless of where they are. However, because time can 

speed up or slow down depending on your reference frame, two events that may appear 

simultaneous to one observer may not appear simultaneous to another. In other words, 

special relativity challenges the idea of absolute simultaneity of events.

EXAMPLE

A spaceship of alien sports enthusiasts passes by the Earth at a speed of 0.8c, watching the 
final minute of a basketball game as they zoom by. Though the clock on Earth measures a 
minute left of play, how long do the aliens think the game lasts?

Because the Earth is moving at such a high speed relative to the alien spaceship, time 

appears to move slower on Earth from the aliens’ vantage point. To be precise, a minute 

of Earth time seems to last:
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Length Contraction
Not only would you observe time moving more slowly on a train moving relative to you at 

half the speed of light, you would also observe the train itself becoming shorter. The 

length of an object, , contracts in the direction of motion to a length when observed 

from a reference frame moving relative to that object at a speed v.

EXAMPLE

You measure a train at rest to have a length of 100 m and width of 5 m. When you observe 
this train traveling at 0.6c (it’s a very fast train), what is its length? What is its width?

WHAT IS ITS LENGTH?

We can determine the length of the train using the equation above:

WHAT IS ITS WIDTH?

The width of the train remains at 5 m, since length contraction only works in the 

direction of motion.

Addition of Velocities
If you observe a person traveling in a car at 20 m/s, and throwing a baseball out the 

window in the direction of the car’s motion at a speed of 10 m/s, you will observe the 

baseball to be moving at 30 m/s. However, things don’t quite work this way at relativistic 

speeds. If a spaceship moving toward you at speed u ejects something in the direction of 

its motion at speed relative to the spaceship, you will observe that object to be moving 

at a speed v:

EXAMPLE
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A spaceship flying toward the Earth at a speed of 0.5c fires a rocket at the Earth that moves 
at a speed of 0.8c relative to the spaceship. What is the best approximation for the speed, v, 
of the rocket relative to the Earth?

(A) v > c

(B) v = c

(C) 0.8c < v < c

(D) 0.5c < v < 0.8c

(E) v < 0.5c

The most precise way to solve this problem is simply to do the math. If we let the speed of 

the spaceship be u = 0.5c and the speed of the rocket relative to the spaceship be = 

0.8c, then the speed, v, of the rocket relative to the Earth is

As we can see, the answer is (C). However, we could also have solved the problem by 

reason alone, without the help of equations. Relative to the Earth, the rocket would be 

moving faster than 0.8c, since that is the rocket’s speed relative to a spaceship that is 

speeding toward the Earth. The rocket cannot move faster than the speed of light, so we 

can safely infer that the speed of the rocket relative to the Earth must be somewhere 

between 0.8c and c.

Mass and Energy
Mass and energy are also affected by relativistic speeds. As things get faster, they also get 

heavier. An object with mass at rest will have a mass m when observed to be traveling 

at speed v:

Kinetic Energy

Because the mass increases, the kinetic energy of objects at high velocities also increases. 

Kinetic energy is given by the equation:

You’ll notice that as v approaches c, kinetic energy approaches infinity. That means it 

would take an infinite amount of energy to accelerate a massive object to the speed of 

light. That’s why physicists doubt that anything will ever be able to travel faster than the 

speed of light.

Mass-Energy Equivalence
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Einstein also derived his most famous equation from the principles of relativity. Mass and 

energy can be converted into one another. An object with a rest mass of can be 

converted into an amount of energy, given by:

We will put this equation to work when we look at nuclear physics.

Relativity and Graphs
One of the most common ways SAT II Physics tests your knowledge of special relativity is 

by using graphs. The key to remember is that, if there is a dotted line representing the 

speed of light, nothing can cross that line. For instance, here are two graphs of kinetic 

energy vs. velocity: the first deals with normal speeds and the second deals with 

relativistic speeds:

In the first graph, we get a perfect parabola. The second graph begins as a parabola, but 

as it approaches the dotted line representing c, it bends so that it constantly approaches c 

but never quite touches it, much like a  y = 1/x graph will constantly approach the x-axis 

but never quite touch it.

The Discovery of the Atom

The idea that matter is made up of infinitely small, absolutely simple, indivisible pieces is 

hardly new. The Greek thinkers Leucippus and Democritus suggested the idea a good 100 

years before Aristotle declared it was nonsense. However, the idea has only carried 

scientific weight for the past 200 years, and it only really took off in the past century.

Thompson’s “Plum Pudding” Model
The first major discovery that set off modern atomic theory was that atoms aren’t in fact 

the smallest things that exist. J. J. Thompson discovered the electron in 1897, which led 

him to posit a “plum pudding” model (a.k.a. the “raisin pudding” model) for the atom. 

Electrons are small negative charges, and Thompson suggested that these negative 

charges are distributed about a positively charged medium like plums in a plum pudding. 

The negatively charged electrons would balance out the positively charged medium so 

that each atom would be of neutral charge.
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Rutherford’s Gold Foil Experiment
In a series of experiments from 1909 to 1911, Ernest Rutherford established that atoms 

have nuclei. His discovery came by accident and as a total surprise. His experiment 

consisted of firing alpha particles, which we will examine in more detail shortly, at a 

very thin sheet of gold foil. Alpha particles consist of two protons and two neutrons: 

they are relatively massive (about 8000 times as massive as an electron), positively 

charged particles. The idea of the experiment was to measure how much the alpha 

particles were deflected from their original course when they passed through the gold foil. 

Because alpha particles are positively charged and electrons are negatively charged, the 

electrons were expected to alter slightly the trajectory of the alpha particles. The 

experiment would be like rolling a basketball across a court full of marbles: when the 

basketball hits a marble, it might deflect a bit to the side, but, because it is much bigger 

than the marbles, its overall trajectory will not be affected very much. Rutherford 

expected the deflection to be relatively small, but sufficient to indicate how electrons are 

distributed throughout the “plum pudding” atom.

To Rutherford’s surprise, most of the alpha particles were hardly deflected at all: they 

passed through the gold foil as if it were just empty space. Even more surprising was that 

a small number of the alpha particles were deflected at 180º, right back in the direction 

they came from.

This unexpected result shows that the mass of an atom is not as evenly distributed as 

Thompson and others had formerly assumed. Rutherford’s conclusion, known as the 

Rutherford nuclear model, was that the mass of an atom is mostly concentrated in a 

nucleus made up of tightly bonded protons and neutrons, which are then orbited by 

325



electrons. The electromagnetic force pulls the electrons into orbit around the nucleus in 

just the way that the gravitational force pulls planets into orbit around the sun.

The radius of an atom’s nucleus is about 1⁄10,000 the radius of the atom itself. As a result, 

most of the alpha particles in Rutherford’s gold foil experiment passed right through 

the sheet of gold foil without making contact with anything. A small number, however, 

bumped into the nucleus of one of the gold atoms and bounced right back.

Quantum Physics

As physicists began to probe the mysteries of the atom, they came across a number of 

unexpected results along the lines of Rutherford’s gold foil experiment. Increasingly, it 

became clear that things at the atomic level are totally unlike anything we find on the 

level of everyday objects. Physicists had to develop a whole new set of mechanical 

equations, called “quantum mechanics,” to explain the movement of elementary particles. 

The physics of this “quantum” world demands that we upset many basic assumptions—

that light travels in waves, that observation has no effect on experiments, etc.—but the 

results, from transistor radios to microchips, are undeniable. Quantum physics is strange, 

but it works.

Electronvolts
Before we dive into quantum physics, we should define the unit of energy we’ll be using in 

our discussion. Because the amounts of energy involved at the atomic level are so small, 

it’s problematic to talk in terms of joules. Instead, we use the electronvolt (eV), where 1 

eV is the amount of energy involved in accelerating an electron through a potential 

difference of one volt. Mathematically,

The Photoelectric Effect
Electromagnetic radiation transmits energy, so when visible light, ultraviolet light, X 

rays, or any other form of electromagnetic radiation shines on a piece of metal, the 

surface of that metal absorbs some of the radiated energy. Some of the electrons in the 

atoms at the surface of the metal may absorb enough energy to liberate them from their 

orbits, and they will fly off. These electrons are called photoelectrons, and this 

phenomenon, first noticed in 1887, is called the photoelectric effect.
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The Wave Theory of Electromagnetic Radiation

Young’s double-slit experiment, which we looked at in the previous chapter, would seem to prove 

conclusively that electromagnetic radiation travels in waves. However, the wave theory of 

electromagnetic radiation makes a number of predictions about the photoelectric effect that prove 

to be false:
Predictions of the wave 
theory

Observed result

Time 
lapse

Electrons need to absorb a certain 
amount of wave energy before 
they can be liberated, so there 
should be some lapse of time 
between the light hitting the 
surface of the metal and the first 
electrons flying off.

Electrons begin flying off the surface 
of the metal almost instantly after 
light shines on it.

Intensity The intensity of the beam of light 
should determine the kinetic 
energy of the electrons that fly off 
the surface of the metal. The 
greater the intensity of light, the 
greater the energy of the 
electrons.

The intensity of the beam of light has 
no effect on the kinetic energy of the 
electrons. The greater the intensity, 
the greater the number of electrons 
that fly off, but even a very intense 
low-frequency beam liberates no 
electrons.

Frequency The frequency of the beam of light 
should have no effect on the 
number or energy of the electrons 
that are liberated.

Frequency is key: the kinetic energy 
of the liberated electrons is directly 
proportional to the frequency of the 
light beam, and no electrons are 
liberated if the frequency is below a 
certain threshold.

Material The material the light shines upon 
should not release more or fewer 
electrons depending on the 
frequency of the light.

Each material has a certain 
threshold frequency: light with a 
lower frequency will release no 
electrons.

Einstein Saves the Day

The young Albert Einstein accounted for these discrepancies between the wave theory 

and observed results by suggesting that electromagnetic radiation exhibits a number of 

particle properties. It was his work with the photoelectric effect, and not his work on 

relativity, that won him his Nobel Prize in 1921.

Rather than assuming that light travels as a continuous wave, Einstein drew on Planck’s 

work, suggesting that light travels in small bundles, called photons, and that each 

photon has a certain amount of energy associated with it, called a quantum. Planck’s 

formula determines the amount of energy in a given quantum:
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where h is a very small number, J · s to be precise, called Planck’s constant, 

and f is the frequency of the beam of light.

Work Function and Threshold Frequency

As the wave theory correctly assumes, an electron needs to absorb a certain amount of 

energy before it can fly off the sheet of metal. That this energy arrives all at once, as a 

photon, rather than gradually, as a wave, explains why there is no time lapse between the 

shining of the light and the liberation of electrons.

We say that every material has a given work function, , which tells us how much 

energy an electron must absorb to be liberated. For a beam of light to liberate electrons, 

the photons in the beam of light must have a higher energy than the work function of the 

material. Because the energy of a photon depends on its frequency, low-frequency light 

will not be able to liberate electrons. A liberated photoelectron flies off the surface of the 

metal with a kinetic energy of:

EXAMPLE

Two beams of light, one blue and one red, shine upon a metal with a work function of 5.0 

eV. The frequency of the blue light is Hz, and the frequency of the red light is 

Hz. What is the energy of the electrons liberated by the two beams of light?

In order to solve this problem, we should translate h from units of J · s into units of eV · s:

We know the frequencies of the beams of light, the work function of the metal, and the 

value of Planck’s constant, h. Let’s see how much energy the electrons liberated by the 

blue light have:

For the electrons struck by the red light:

The negative value in the sum means that , so the frequency of the red light is too 

low to liberate electrons. Only electrons struck by the blue light are liberated.

The Bohr Model of the Atom
Let’s now return to our discussion of the atom. In 1913, the Danish physicist Niels Bohr 

proposed a model of the atom that married Planck’s and Einstein’s development of 

quantum theory with Rutherford’s discovery of the atomic nucleus, thereby bringing 

quantum physics permanently into the mainstream of the physical sciences.
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The Problem with Rutherford’s Model

Light and other electromagnetic waves are emitted by accelerating charged particles. In 

particular, the electrons being accelerated in orbit about the nucleus of an atom release a 

certain amount of energy in the form of electromagnetic radiation. If we recall the chapter 

on gravity, the radius of an object in orbit is a function of its potential energy. If an 

electron gives off energy, then its potential energy, and hence the radius of its orbit about 

the nucleus, should decrease. But according to Rutherford’s model, any radiating electron 

would give off all its potential energy in a fraction of a second, and the electron would 

collide with the nucleus. The fact that most of the atoms in the universe have not yet 

collapsed suggests a fundamental flaw in Rutherford’s model of electrons orbiting nuclei.

The Mystery of Atomic Spectra

Another puzzling phenomenon unexplained by Rutherford’s model, or anything else 

before 1913, is the spectral lines we see when looking through a spectroscope. A 

spectroscope breaks up the visible light emitted from a light source into a spectrum, so 

that we can see exactly which frequencies of light are being emitted.

The puzzling thing about atomic spectra is that light seems to travel only in certain 

distinct frequencies. For instance, we might expect the white light of the sun to transmit 

light in an even range of all different frequencies. In fact, however, most sunlight travels 

in a handful of particular frequencies, while very little or no light at all travels at many 

other frequencies.

Bohr’s Hydrogen Atom

Niels Bohr drew on Rutherford’s discovery of the nucleus and Einstein’s suggestion that 

energy travels only in distinct quanta to develop an atomic theory that accounts for why 

electrons do not collapse into nuclei and why there are only particular frequencies for 

visible light.

Bohr’s model was based on the hydrogen atom, since, with just one proton and one 

electron, it makes for the simplest model. As it turns out, Bohr’s model is still mostly 

accurate for the hydrogen atom, but it doesn’t account for some of the complexities of 

more massive atoms.

According to Bohr, the electron of a hydrogen atom can only orbit the proton at certain 

distinct radii. The closest orbital radius is called the electron’s ground state. When an 

electron absorbs a certain amount of energy, it will jump to a greater orbital radius. After 

a while, it will drop spontaneously back down to its ground state, or some other lesser 

radius, giving off a photon as it does so.
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Because the electron can only make certain jumps in its energy level, it can only emit 

photons of certain frequencies. Because it makes these jumps, and does not emit a steady 

flow of energy, the electron will never spiral into the proton, as Rutherford’s model 

suggests.

Also, because an atom can only emit photons of certain frequencies, a spectroscopic 

image of the light emanating from a particular element will only carry the frequencies of 

photon that element can emit. For instance, the sun is mostly made of hydrogen, so most 

of the light we see coming from the sun is in one of the allowed frequencies for energy 

jumps in hydrogen atoms.

Analogies with the Planetary Model

Because the electron of a hydrogen atom orbits the proton, there are some analogies 

between the nature of this orbit and the nature of planetary orbits. The first is that the 

centripetal force in both cases is . That means that the centripetal force on the 

electron is directly proportional to its mass and to the square of its orbital velocity and is 

inversely proportional to the radius of its orbit.

The second is that this centripetal force is related to the electric force in the same way 

that the centripetal force on planets is related to the gravitational force:

where e is the electric charge of the electron, and Ze is the electric charge of the nucleus. 

Z is a variable for the number of protons in the nucleus, so in the hydrogen atom, Z = 1.

The third analogy is that of potential energy. If we recall, the gravitational potential 

energy of a body in orbit is . Analogously, the potential energy of an 

electron in orbit is: 

Differences from the Planetary Model

However, the planetary model places no restriction on the radius at which planets may 

orbit the sun. One of Bohr’s fundamental insights was that the angular momentum of the 

electron, L, must be an integer multiple of . The constant is so common in 

quantum physics that it has its own symbol, . If we take n to be an integer, we get:

Consequently, . By equating the formula for centripetal force and the formula 

for electric force, we can now solve for r:
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Don’t worry: you don’t need to memorize this equation. What’s worth noting for the 

purposes of SAT II Physics is that there are certain constant values for r, for different 

integer values of n. Note also that r is proportional to , so that each successive radius is 

farther from the nucleus than the one before.

Electron Potential Energy

The importance of the complicated equation above for the radius of an orbiting electron 

is that, when we know the radius of an electron, we can calculate its potential energy. 

Remember that the potential energy of an electron is . If you plug in 

the above values for r, you’ll find that the energy of an electron in a hydrogen atom at its 

ground state (where n = 1 and Z = 1) is –13.6 eV. This is a negative number because we’re 

dealing with potential energy: this is the amount of energy it would take to free the 

electron from its orbit.

When the electron jumps from its ground state to a higher energy level, it jumps by 

multiples of n. The potential energy of an electron in a hydrogen atom for any value of n 

is: 
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Frequency and Wavelength of Emitted Photons

As we said earlier, an excited hydrogen atom emits photons when the electron jumps to a 

lower energy state. For instance, a photon at n = 2 returning to the ground state of n = 1 

will emit a photon with energy . Using Planck’s 

formula, which relates energy and frequency, we can determine the frequency of the 

emitted photon:

Knowing the frequency means we can also determine the wavelength:

As it turns out, this photon is of slightly higher frequency than the spectrum of visible 

light: we won’t see it, but it will come across to us as ultraviolet radiation. Whenever an 

electron in a hydrogen atom returns from an excited energy state to its ground state it lets 

off an ultraviolet photon.

EXAMPLE
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A hydrogen atom is energized so that its electron is excited to the n = 3 energy state. How 
many different frequencies of electromagnetic radiation could it emit in returning to its 
ground state?

Electromagnetic radiation is emitted whenever an electron drops to a lower energy state, 

and the frequency of that radiation depends on the amount of energy the electron emits 

while dropping to this lower energy state. An electron in the n = 3 energy state can either 

drop to n = 2 or drop immediately to n = 1. If it drops to n = 2, it can then drop once more 

to n = 1. There is a different amount of energy associated with the drop from n = 3 to n = 

2, the drop from n = 3 to n = 1, and the drop from n = 2 to n = 1, so there is a different 

frequency of radiation emitted with each drop. Therefore, there are three different 

possible frequencies at which this hydrogen atom can emit electromagnetic radiation.

Wave-Particle Duality
The photoelectric effect shows that electromagnetic waves exhibit particle properties 

when they are absorbed or emitted as photons. In 1923, a French graduate student 

named Louis de Broglie (pronounced “duh BRO-lee”) suggested that the converse is also 

true: particles can exhibit wave properties. The formula for the so-called de Broglie 

wavelength applies to all matter, whether an electron or a planet:

De Broglie’s hypothesis is an odd one, to say the least. What on earth is a wavelength 

when associated with matter? How can we possibly talk about planets or humans having 

a wavelength? The second question, at least, can be easily answered. Imagine a person of 

mass 60 kg, running at a speed of 5 m/s. That person’s de Broglie wavelength would be:

We cannot detect any “wavelength” associated with human beings because this 

wavelength has such an infinitesimally small value. Because h is so small, only objects 

with a very small mass will have a de Broglie wavelength that is at all noticeable.

De Broglie Wavelength and Electrons

The de Broglie wavelength is more evident on the atomic level. If we recall, the angular 

momentum of an electron is . According to de Broglie’s formula, mv = h/

. Therefore,

The de Broglie wavelength of an electron is an integer multiple of , which is the length 

of a single orbit. In other words, an electron can only orbit the nucleus at a radius where 

it will complete a whole number of wavelengths. The electron in the figure below 
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completes four cycles in its orbit around the nucleus, and so represents an electron in the 

n = 4 energy state.

The de Broglie wavelength, then, serves to explain why electrons can orbit the nucleus 

only at certain radii.

EXAMPLE

Which of the following explains why no one has ever managed to observe and measure a de 
Broglie wavelength of the Earth?

(A) The Earth is traveling too slowly. It would only have an observable de Broglie 
wavelength if it were moving at near light speed.

(B) The Earth is too massive. Only objects of very small mass have noticeable wavelengths.

(C) The Earth has no de Broglie wavelength. Only objects on the atomic level have 
wavelengths associated with them.

(D) “Wavelength” is only a theoretical term in reference to matter. There is no observable 
effect associated with wavelength.

(E) The individual atoms that constitute the Earth all have different wavelengths that 
destructively interfere and cancel each other out. As a result, the net wavelength of the 
Earth is zero.

This is the sort of question you’re most likely to find regarding quantum physics on SAT 

II Physics: the test writers want to make sure you understand the theoretical principles 

that underlie the difficult concepts in this area. The answer to this question is B. As we 

discussed above, the wavelength of an object is given by the formula = h/mv. Since h is 

such a small number, mv must also be very small if an object is going to have a noticeable 

wavelength. Contrary to A, the object must be moving relatively slowly, and must have a 

very small mass. The Earth weighs kg, which is anything but a small mass. In 

fact, the de Broglie wavelength for the Earth is m, which is about as small a 

value as you will find in this book.

Heisenberg’s Uncertainty Principle
In 1927, a young physicist named Werner Heisenberg proposed a counterintuitive and 

startling theory: the more precisely we measure the position of a particle, the less 

precisely we can measure the momentum of that particle. This principle can be expressed 

mathematically as:
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where is the uncertainty in a particle’s position and is the uncertainty in its 

momentum.

According to the uncertainty principle, if you know exactly where a particle is, you 

have no idea how fast it is moving, and if you know exactly how fast it is moving, you have 

no idea where it is. This principle has profound effects on the way we can think about the 

world. It casts a shadow of doubt on many long-held assumptions: that every cause has a 

clearly defined effect, that observation has no influence upon experimental results, and so 

on. For SAT II Physics, however, you needn’t be aware of the philosophical conundrum 

Heisenberg posed—you just need to know the name of the principle, its meaning, and the 

formula associated with it.

Nuclear Physics

Until now, we’ve taken it for granted that you know what protons, neutrons, and 

electrons are. Within the past century, these objects have gone from being part of vaguely 

conjectured theories by advanced physicists to common knowledge. Unfortunately, SAT 

II Physics is going to test you on matters that go far beyond common knowledge. That’s 

where we come in. 

Basic Vocabulary and Notation
As you surely know, atoms are made up of a nucleus of protons and neutrons orbited by 

electrons. Protons have a positive electric charge, electrons have a negative electric 

charge, and neutrons have a neutral charge. An electrically stable atom will have as many 

electrons as protons.

Atomic Mass Unit

Because objects on the atomic level are so tiny, it can be a bit unwieldy to talk about their 

mass in terms of kilograms. Rather, we will often use the atomic mass unit (amu, or 

sometimes just u), which is defined as one-twelfth of the mass of a carbon-12 atom. That 

means that 1 amu = kg. We can express the mass of the elementary 

particles either in kilograms or atomic mass units:

Particle Mass (kg) Mass (amu)

Proton 1.0073

Neutron 1.0086

Electron

As you can see, the mass of electrons is pretty much negligible when calculating the mass 

of an atom.
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Atomic Number, Neutron Number, and Mass Number

You’re probably somewhat familiar with the periodic table and know that there are over 

100 different chemical elements. An element is defined by the number of protons in the 

atomic nucleus. For instance, a nucleus with just one proton is hydrogen, a nucleus with 

two protons is helium, and a nucleus with 92 protons is uranium, the heaviest naturally 

occurring element. The number of protons in an atomic nucleus determines the atomic 

number, Z. In an electrically neutral atom of atomic number Z, there will be Z protons 

and Z electrons.

The number of neutrons in an atomic nucleus determines the neutron number, N. 

Different nuclei of the same atomic number—that is, atoms of the same element—may 

have different numbers of neutrons. For instance, the nuclei of most carbon atoms have 

six protons and six neutrons, but some have six protons and eight neutrons. Atoms of the 

same element but with different numbers of neutrons are called isotopes.

As we saw above, electrons weigh very little in comparison to protons and neutrons, 

which have almost identical masses. The sum of the atomic number and the neutron 

number, Z + N, gives us an atom’s mass number, A.

Chemical Notation

The standard form for writing the chemical symbol of an element, X, is:

The element’s mass number is written in superscript, and the atomic number is written in 

subscript. You can infer the neutron number by subtracting A – Z. For instance, we would 

write the chemical symbol for the two carbon isotopes, called carbon-12 and carbon-14, as 

follows:

The same sort of system can be used to represent protons, neutrons, and electrons 

individually. Because a proton is the same thing as a hydrogen atom without an electron, 

we can represent protons by writing:

where the + sign shows that the hydrogen ion has a positive charge due to the absence of 

the electron. Neutrons are represented by the letter “n” as follows:

Electrons and positrons, which are positively charged electrons, are represented, 

respectively, as follows:

The number in subscript gives the charge of the particle—0 in the case of the neutron and 

–1 in the case of the electron. The number in superscript gives the mass. Though 
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electrons have mass, it is so negligible in comparison to that of protons and neutrons that 

it is given a mass number of 0.

Some Other Elementary Particles

On the SAT II, you will not need to apply your knowledge of any elementary particles 

aside from the proton, the neutron, and the electron. However, the names of some other 

particles may come up, and you will at least need to know what they are.

Quarks are the fundamental building blocks of the protons, neutrons, and mesons. They 

generally have positive or negative charges in units of one-third to two-thirds of the 

charge of the electron. Protons are neutrons composed of three quarks. Mesons are 

composed of a quark–antiquark pair.

Radioactive Decay
Some configurations of protons and neutrons are more stable in a nucleus than others. 

For instance, the carbon-12 atom is more stable than the carbon-14 atom. While carbon-

12 will remain stable, carbon-14 will spontaneously transform into a more stable isotope 

of nitrogen, releasing particles and energy in the process. Because these transformations 

take place at a very steady rate, archaeologists can date carbon-based artifacts by 

measuring how many of the carbon-14 atoms have decayed into nitrogen. These 

transformations are called radioactive decay, and isotopes and elements like carbon-14 

that undergo such decay are called radioactive. There are three major kinds of 

radioactive decay.

Alpha Decay

When an atom undergoes alpha decay, it sheds an alpha particle, , which consists 

of two protons and two neutrons. Through alpha decay, an atom transforms into a 

smaller atom with a lower atomic number. For instance, uranium-238 undergoes a very 

slow process of alpha decay, transforming into thorium:

Notice that the combined mass number and atomic number of the two particles on the 

right adds up to the mass number and atomic number of the uranium atom on the left.

Beta Decay

There are actually three different kinds of beta decay—  decay, decay, and electron 

capture—but SAT II Physics will only deal with decay, the most common form of beta 

decay. In decay, one of the neutrons in the nucleus transforms into a proton, and an 

electron and a neutrino, , are ejected. A neutrino is a neutrally charged particle with 

very little mass. The ejected electron is called a beta particle, .

The decay of carbon-14 into nitrogen is an example of decay:

Note that the mass number of the carbon on the left is equal to the sum of the mass 

numbers of the nitrogen and the electron on the right: 14 = 14 + 0. Similarly, the atomic 
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number of the carbon is equal to the sum of the atomic number of the nitrogen and the 

electron: 6 = 7 – 1. Because the neutrino has no charge and negligible mass, its presence 

has no effect on any aspect of beta decay that we will study. Still, it’s important that you 

know the neutrino’s there.

Gamma Decay

Gamma decay is the most straightforward kind of decay. An element in a high-energy 

state can return to a lower energy state by emitting a gamma ray, , which is an 

electromagnetic photon of very high frequency. No other particles are ejected and the 

nucleus doesn’t transform from one element to another. All we get is an ejected gamma 

ray, as in this example with technetium:

EXAMPLE

The reaction schematized above is an example of what form of radioactive decay? What are 
the values for A, Z, and X?

WHAT FORM OF RADIOACTIVE DECAY?

In the above reaction, a sodium nucleus transforms into some other element and gives off 

an electron. Electrons are only released in beta decay. A neutrino is also released but, 

because its effects are negligible, it is often left out of the equation.

WHAT ARE THE VALUES FOR A, Z, AND X?

We can calculate A and Z because the sum of the atomic numbers and the mass numbers 

on the right must add up to the atomic number and the mass number on the left. We can 

solve for A and Z with the following equations:

So A = 24 and Z = 12. The resulting element is determined by the atomic number, Z. 

Consult a periodic table, and you will find that the element with an atomic number of 12 

is magnesium, so X stands in for the chemical symbol for magnesium, Mg.

Binding Energy
Atomic nuclei undergo radioactive decay so as to go from a state of high energy to a state 

of low energy. Imagine standing on your hands while balancing a box on your feet. It 

takes a lot of energy, not to mention balance, to hold yourself in this position. Just as you 

may spontaneously decide to let the box drop to the floor and come out of your 

handstand, atomic nuclei in high-energy states may spontaneously rearrange themselves 

to arrive at more stable low-energy states.

Nuclear Forces

So far, all the physical interactions we have looked at in this book result from either the 

gravitational force or the electromagnetic force. Even the collisions we studied in the 
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chapters on mechanics are the result of electromagnetic repulsion between the atoms in 

the objects that collide with one another. However, neither of these forces explains why 

the protons in an atomic nucleus cling together. In fact, the electromagnetic force should 

act to make the protons push away from one another, not cling together. Explaining how 

things work on the atomic level requires two additional forces that don’t act beyond the 

atomic level: the strong and weak nuclear forces. The strong nuclear force binds the 

protons and neutrons together in the nucleus. The weak nuclear force governs beta decay. 

You don’t need to know any of the math associated with these forces, but you should 

know what they are.

Mass Defect

As we have discussed, the mass of a proton is 1.0073 amu and the mass of a neutron is 

1.0086 amu. Curiously, though, the mass of an alpha particle, which consists of two 

protons and two neutrons, is not 2(1.0073) + 2(1.0086) = 4.0318 amu, as one might 

expect, but rather 4.0015 amu. In general, neutrons and protons that are bound in a 

nucleus weigh less than the sum of their masses. We call this difference in mass the mass 

defect, , which in the case of the alpha particle is 4.0318 – 4.0015 = 0.0202 amu.

Einstein’s Famous Equation

The reason for this mass defect is given by the most famous equation in the world: 

As we discussed in the section on relativity, this equation shows us that mass and energy 

can be converted into one another.

The strong nuclear force binds the nucleus together with a certain amount of energy. A 

small amount of the matter pulled into the nucleus of an atom is converted into a 

tremendous amount of energy, the binding energy, which holds the nucleus together. 

In order to break the hold of the strong nuclear force, an amount of energy equal to or 

greater than the binding energy must be exerted on the nucleus. For instance, the binding 

energy of the alpha particle is:

Note that you have to convert the mass from atomic mass units to kilograms in order to 

get the value in joules. Often we express binding energy in terms of millions of 

electronvolts, MeV, per nucleon. In this case, J = 18.7 MeV. Because there are 

four nucleons in the alpha particle, the binding energy per nucleon is 18.7/4 = 4.7 

MeV/nucleon.

EXAMPLE

A deuteron, a particle consisting of a proton and a neutron, has a binding energy of 1.12 
MeV per nucleon. What is the mass of the deuteron?
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Since there are two nucleons in a deuteron, the binding energy for the deuteron as a 

whole is MeV. That energy, converted into mass, is:

The mass of a free proton plus a free neutron is 1.0073 + 1.0086 = 2.0159 amu. The mass 

of the deuteron will be 0.0024 amu less than this amount, since that is the amount of 

mass converted into energy that binds the proton and the neutron together. So the 

deuteron will weigh 2.0159 – 0.0024 = 2.0135 amu.

Decay Rates
On SAT II Physics, you probably won’t be expected to calculate how long it takes a 

radioactive nucleus to decay, but you will be expected to know how the rate of decay 

works. If we take a sample of a certain radioactive element, we say that its activity, A, is 

the number of nuclei that decay per second. Obviously, in a large sample, A will be 

greater than in a small sample. However, there is a constant, called the decay constant, 

, that holds for a given isotope regardless of the sample size. We can use the decay 

constant to calculate, at a given time, t, the number of disintegrations per second, A; the 

number of radioactive nuclei, N; or the mass of the radioactive sample, m:

, , and are the values at time t = 0. The mathematical constant e is 

approximately 2.718.

The decay constant for uranium-238 is about s–1. After one million years, a 1.00 

kg sample of uranium-238 (which has atoms) will contain

Uranium-238 is one of the slower decaying radioactive elements.

Half-Life

We generally measure the radioactivity of a certain element in terms of its half-life, 

, the amount of time it takes for half of a given sample to decay. The equation for half-life, 

which can be derived from the equations above, is:
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You won’t need to calculate the natural logarithm of 2—remember, no calculators are 

allowed on the test. What you will need to know is that, at time t = , one-half of a 

given radioactive sample will have decayed. At time t = 2 , one-half of the remaining 

half will have decayed, leaving only one-quarter of the original sample. You may 

encounter a graph that looks something like this:

The graph of decay vs. time will get steadily closer to the x-axis, but will never actually 

reach it. The fewer atoms that remain undecayed, the less activity there will be.

Nuclear Reactions
Nuclear reactions are effectively the same thing as radioactivity: new particles are formed 

out of old particles, and the binding energy released in these transitions can be 

determined by the equation E = mc2. The difference is that nuclear reactions that are 

artificially induced by humans take place very rapidly and involve huge releases of energy 

in a very short time. There are two kinds of nuclear reaction with which you should be 

familiar for SAT II Physics.

Nuclear Fission

Nuclear fission was used in the original atomic bomb, and is the kind of reaction 

harnessed in nuclear power plants. To produce nuclear fission, neutrons are made to 

bombard the nuclei of heavy elements—often uranium—and thus to split the heavy 

nucleus in two, releasing energy in the process. In the fission reactions used in power 

plants and atomic bombs, two or more neutrons are freed from the disintegrating 

nucleus. The free neutrons then collide with other atomic nuclei, starting what is called a 

chain reaction. By starting fission in just one atomic nucleus, it is possible to set off a 

chain reaction that will cause the fission of millions of other atomic nuclei, producing 

enough energy to power, or destroy, a city. 

Nuclear Fusion

Nuclear fusion is ultimately the source of all energy on Earth: fusion reactions within 

the sun are the source of all the heat that reaches the Earth. These reactions fuse two or 
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more light elements—often hydrogen—together to form a heavier element. As with 

fission, this fusion releases a tremendous amount of energy.

Fusion reactions can only occur under intense heat. Humans have only been able to 

produce a fusion reaction in the hydrogen bomb, or H-bomb, by first detonating an 

atomic bomb whose fission produced heat sufficient to trigger the fusion reaction. 

Scientists hope one day to produce a controllable fusion reaction, since the abundance of 

hydrogen found in this planet’s water supply would make nuclear fusion a very cheap and 

nonpolluting source of energy.
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1. . A train at rest has a length of 100 m. At what speed must it approach a tunnel of length 
80 m so that an observer at rest with respect to the tunnel will see that the entire train is 
in the tunnel at one time?

(A) 1.25c

(B) 0.8c

(C) 0.64c

(D) 0.6c

(E) 0.36c

2. .
A photon has J of energy. Planck’s constant, h, is J Â· s. The 
frequency of the photon is most nearly:

(A)
Hz 

(B)
Hz 

(C) Hz

(D)
Hz

(E)
Hz 

3. . What happens to a stream of alpha particles that is shot at a thin sheet of gold foil?

(A) All of the particles pass straight through

(B) A few of the particles bounce back at 180Âº 

(C) All of the particles bounce back at 180Âº 

(D) Most of the particles are absorbed by the foil

(E) None of the particles are deflected by more than 45Âº

4. . According to Bohr’s model of the atom, why do atoms emit or absorb radiation only at 
certain wavelengths?

(A) Because the protons and electrons are distributed evenly throughout the atom

(B) Because electrons can orbit the nucleus at any radius

(C) Because electrons orbit the nucleus only at certain discrete radii

(D) Because protons orbit the nucleus only at certain discrete radii

(E) Because photons can only have discrete wavelengths

344



5. . An electron is accelerated through a particle accelerator and then ejected through a 
diffraction grating. By means of the diffraction experiment, it is determined that the 

electron’s de Broglie wavelength is m. What is the electron’s linear 

momentum? Use Planck’s constant, J Â· s.

(A)
kg Â· m/s

(B)
kg Â· m/s

(C)
kg Â· m/s

(D)
kg Â· m/s

(E)
kg Â· m/s

6. . Which of the following is the best definition of the uncertainty principle?

(A) We cannot know for certain when any given radioactive particle will undergo decay

(B) We cannot know both the momentum and the position of a particle at the same time

(C) The laws of physics are the same in all intertial reference frames

(D) Light exhibits both wave and particle properties

(E) An unobserved particle can be in two places at the same time

7. . Which of the following particles is most massive?

(A) A proton

(B) A neutron

(C) An electron

(D) A beta particle

(E) An alpha particle

8. . In the above nuclear reaction, what particle is represented by X?

(A) A proton

(B) An electron

(C) An alpha particle

(D) A gamma ray

(E) A beta particle

Questions 9 and 10 relate to the following graphs.

345



(A)

(B)

(C)

(D)

(E)

9. . Which graph plots the activity of a radioactive substance as a function of time?

10. . Which graph shows the half-life of a radioactive substance as a function of time?

Explanations

1.      D     

For an observer to see that the entire train is in the tunnel at one time, that observer must see that the train 

is only 80 m long. At relativistic speeds, the length of objects contracts in the direction of their motion 
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according to the formula , where l is the relativistic length of the train, is the rest 

length of the train, and v is the speed of the train relative to the tunnel. Knowing that = 100 m and l = 80 

m, we can solve for v:

2.      D     

Energy, frequency, and Planck’s constant are related by the formula E = hf. Solving this problem is a matter 

of plugging numbers into this formula:

3.      B     

Most of the particles will pass through with little deflection. However, some of the particles will hit the 

nucleus of one of the gold atoms and bounce back in the direction they came.

4.      C     

Answering this question is simply a matter of recalling what Bohr’s atomic model shows us. According to 

Bohr’s atomic model, electrons orbit the nucleus only at certain discrete radii, so C is the correct answer.

5.      B     

This problem asks that you apply the formula relating de Broglie wavelength to linear momentum, 

:

6.      B     
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Heisenberg’s uncertainty principle tells us that we can never know both the momentum and the position of a 

particle at the same time, since the act of measuring one will necessarily affect the other.

7.      E     

An alpha particle is made up of two protons and two neutrons, so it is four times as massive as either a 

proton or a neutron. Further, protons and neutrons are nearly 2000 times as massive as an electron. A beta 

particle is the same thing as an electron.

8.      C     

Both atomic number and mass number are conserved in nuclear reactions. Since the mass number is 241 

and the atomic number is 95 on the left side of the equation, the mass number must add up to 241 and the 

atomic number to 95 on the right side. Since the mass number of the Np atom is 237 and its atomic number 

is 93, the X atom must have a mass number of 4 and an atomic number of 2, which is the case with an alpha 

particle.

9.      E     

The activity of a radioactive sample, A, at time t is given by the formula , where is the 

activity at time t = 0, e is the natural constant, and is the decay constant. This formula tells us that the 

activity of a radioactive sample decreases exponentially over time, as expressed in graph E.

10.      A     

The half-life of a radioactive substance is the constant that determines how long it will take for half of a 

radioactive sample to decay. Since half-life is a constant, its value does not change, as represented in graph 

A.

Physics Glossary

The following list defines all of the bold-faced words you encountered as you read this 

book.

A–D

A
Absolute zero 

The lowest theoretical temperature a material can have, where the molecules that make up the 

material have no kinetic energy. Absolute zero is reached at 0 K or –273º C.

Acceleration 

A vector quantity defined as the rate of change of the velocity vector with time.

Activity 
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In radioactive substances, the number of nuclei that decay per second. Activity, A, will be larger 

in large samples of radioactive material, since there will be more nuclei.

Alpha decay 

A form of radioactive decay where a heavy element emits an alpha particle and some energy, 

thus transforming into a lighter, more stable, element.

Alpha particle 

A particle, , which consists of two protons and two neutrons. It is identical to the nucleus of a 

helium atom and is ejected by heavy particles undergoing alpha decay.

Amplitude 

In reference to oscillation, amplitude is the maximum displacement of the oscillator from its 

equilibrium position. Amplitude tells how far an oscillator is swinging back and forth. In 

periodic motion, amplitude is the maximum displacement in each cycle of a system in periodic 

motion. The precise definition of amplitude depends on the particular situation: in the case of a 

stretched string it would be measured in meters, whereas for sound waves it would be 

measured in units of pressure.

Angle of incidence 

When a light ray strikes a surface, the angle of incidence is the angle between the incident ray 

and the normal.

Angle of reflection 

The angle between a reflected ray and the normal.

Angle of refraction 

The angle between a refracted ray and the line normal to the surface.

Angular acceleration 

A vector quantity, , equal to the rate of change of the angular velocity vector with time. It is 

typically given in units of rad/s2. 

Angular displacement 

The net change, , in a point’s angular position, . It is a scalar quantity.

Angular frequency 

A frequency, f, defined as the number of revolutions a rigid body makes in a given time interval. 

It is a scalar quantity commonly denoted in units of Hertz (Hz) or s–1.

Angular momentum 

A vector quantity, L, that is the rotational analogue of linear momentum. For a single particle, 

the angular momentum is the cross product of the particle’s displacement from the axis of 

rotation and the particle’s linear momentum, . For a rigid body, the angular 

momentum is a product of the object’s moment of inertia, I, and its angular velocity, . 

Angular period 

The time, T, required for a rigid body to complete one revolution.

Angular position 

The position, , of an object according to a co-ordinate system measured in s of the angle of 

the object from a certain origin axis. Conventionally, this origin axis is the positive x-axis.

Angular velocity 

A vector quantity, , that reflects the change of angular displacement with time, and is 

typically given in units of rad/s. To find the direction of the angular velocity vector, take your 
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right hand and curl your fingers along the particle or body’s direction of rotation. Your thumb 

then points in the direction of the body’s angular velocity.

Antinode 

The points midway between nodes on a standing wave, where the oscillations are largest.

Atom 

The building blocks of all matter, atoms are made up of a nucleus consisting of protons and 

neutrons, and a number of electrons that orbit the nucleus. An electrically neutral atom has as 

many protons as it has electrons.

Atomic number 

A number, Z, associated with the number of protons in the nucleus of an atom. Every element 

can be defined in s of its atomic number, since every atom of a given element has the same 

number of protons.

Axis of rotation 

The line that every particle in the rotating rigid body circles about. 

B
Basis vector 

A vector of magnitude 1 along one of the coordinate axes. Generally, we take the basis vectors to 

be and , the vectors of length 1 along the x- and y-axes, respectively.

Beats 

When two waves of slightly different frequencies interfere with one another, they produce a 

“beating” interference pattern that alternates between constructive (in-phase) and destructive 

(out-of-phase). In the case of sound waves, this sort of interference makes a “wa-wa-wa” sound, 

and the frequency of the beats is equal to the difference in the frequencies of the two interfering 

waves.

Beta decay 

A form of radioactive decay where a heavy element ejects a beta particle and a neutrino, 

becoming a lighter element in the process.

Beta particle 

A particle, , identical to an electron. Beta particles are ejected from an atom in the process of 

beta decay.

Bohr atomic model 

A model for the atom developed in 1913 by Niels Bohr. According to this model, the electrons 

orbiting a nucleus can only orbit at certain particular radii. Excited electrons may jump to a 

more distant radii and then return to their ground state, emitting a photon in the process.

Boiling point 

The temperature at which a material will change phase from liquid to gas or gas to liquid.

Boyle’s Law 

For a gas held at a constant temperature, pressure and volume are inversely proportional.

C
Calorie 

The amount of heat needed to raise the temperature of one gram of water by one degree 

Celsius. 1 cal = 4.19 J.

Celsius 
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A scale for measuring temperature, defined such that water freezes at 0ºC and boils at 100ºC. 

0ºC = 273 K.

Center of curvature 

With spherical mirrors, the center of the sphere of which the mirror is a part. All of the normals 

pass through it.

Center of mass 

Given the trajectory of an object or system, the center of mass is the point that has the same 

acceleration as the object or system as a whole would have if its mass were concentrated at that 

point. In terms of force, the center of mass is the point at which a given net force acting on a 

system will produce the same acceleration as if the system’s mass were concentrated at that 

point.

Centripetal acceleration 

The acceleration of a body experiencing uniform circular motion. This acceleration is always 

directed toward the center of the circle.

Centripetal force 

The force necessary to maintain a body in uniform circular motion. This force is always directed 

radially toward the center of the circle.

Chain reaction 

The particles and energy released by the fission or fusion of one atom may trigger the fission or 

fusion of further atoms. In a chain reaction, fission or fusion is rapidly transferred to a large 

number of atoms, releasing tremendous amounts of energy.

Charles’s Law 

For a gas held at constant pressure, temperature and volume are directly proportional.

Coefficient of kinetic friction 

The coefficient of kinetic friction, , for two materials is the constant of proportionality 

between the normal force and the force of kinetic friction. It is always a number between zero 

and one.

Coefficient of linear expansion 

A coefficient that tells how much a material will expand or contract lengthwise when it is 

heated or cooled.

Coefficient of static friction 

The coefficient of static friction, for two materials is the constant of proportionality between 

the normal force and the maximum force of static friction. It is always a number between zero 

and one.

Coefficient of volume expansion 

A coefficient that tells how much the volume of a solid will change when it is heated or cooled.

Coherent light 

Light such that all of the associated waves have the same wavelength and are in phase.

Collision 

When objects collide, each object feels a force for a short amount of time. This force imparts an 

impulse, or changes the momentum of each of the colliding objects. The momentum of a 

system is conserved in all kinds of collisions. Kinetic energy is conserved in elastic collisions, 
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but not in inelastic collisions. In a perfectly inelastic collision, the colliding objects stick 

together after they collide.

Completely inelastic collision 

A collision in which the colliding particles stick together. 

Component 

Any vector can be expressed as the sum of two mutually perpendicular component vectors. 

Usually, but not always, these components are multiples of the basis vectors, and ; that is, 

vectors along the x-axis and y-axis. We define these two vectors as the x- and y-components of 

the vector. 

Compression 

An area of high air pressure that acts as the wave crest for sound waves. The spacing between 

successive compressions is the wavelength of sound, and the number of successive areas of 

compression that arrive at the ear per second is the frequency, or pitch, of the sound.

Concave lens 

Also called a diverging lens, a lens that is thinner in the middle than at the edges. Concave 

lenses refract light away from a focal point.

Concave mirror 

A mirror that is curved such that its center is farther from the viewer than the edges, such as 

the front of a spoon. Concave mirrors reflect light through a focal point.

Conduction 

Heat transfer by molecular collisions.

Conservation of Angular Momentum 

If the net torque acting on a rigid body is zero, then the angular momentum of the body is 

constant or conserved.

Conservation of momentum 

The principle stating that for any isolated system, linear momentum is constant with time. 

Constant of proportionality 

A constant in the numerator of a formula.

Constructive interference 

The amplification of one wave by another, identical wave of the same sign. Two constructively 

interfering waves are said to be “in phase.”

Convection 

Heat transfer via the mass movement of molecules.

Convex lens 

Also called a converging lens, a lens that is thicker in the middle than at the edges. Convex 

lenses refract light through a focal point.

Convex mirror 

A mirror that is curved such that its center is closer to the viewer than the edges, such as a 

doorknob. Convex mirrors reflect light away from a focal point.

Cosine 

The cosine of an angle in a right triangle is equal to the length of the side adjacent to the angle 

divided by the length of the hypotenuse.

Crest 
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The points of maximum displacement along a wave. In traveling waves, the crests move in the 

direction of propagation of the wave. The crests of standing waves, also called anti-nodes, 

remain in one place.

Critical angle 

For two given media, the smallest angle of incidence at which total internal reflection occurs.

Cross product 

A form of vector multiplication, where two vectors are multiplied to produce a third vector. The 

cross product of two vectors, A and B, separated by an angle, , is , 

where is a unit vector perpendicular to both A and B. To deine which direction points, you 

must use the right-hand rule.

Cycle 

In oscillation, a cycle occurs when an object undergoing oscillatory motion completes a “round-

trip.” For instance, a pendulum bob released at angle has completed one cycle when it swings 

to and then back to again. In period motion, a cycle is the sequence through which a 

system once during each oscil-lation. A cycle can consist of one trip up and down for a piece of 

stretched string, or of a compression followed by a rarefaction of air pressure for sound waves.

D
De Broglie wavelength 

A wavelength, given by = h/mv, which is associated with matter. Louis de Broglie proposed 

the idea that matter could be treated as waves in 1923 and applied this theory successfully to 

small particles like electrons.

Decay constant 

A constant, , not to be confused with wavelength, that defines the speed at which a 

radioactive element undergoes decay. The greater is, the faster the element decays.

Decibel 

A logorithmic unit for measuring the volume of sound, which is the square of the amplitude of 

sound waves.

Deposition 

The process by which a gas turns directly into a solid because it cannot exist as a liquid at 

certain pressures.

Destructive interference 

The cancellation of one wave by another wave that is exactly out of phase with the first. Despite 

the dramatic name of this phenomenon, nothing is “destroyed” by this interference—the two 

waves emerge intact once they have passed each other.

Diffraction 

The bending of light at the corners of objects or as it passes through narrow slits or apertures.

Diffraction grating 

A sheet, film, or screen with a pattern of equally spaced slits. Typically the width of the slits and 

space between them is chosen to generate a particular diffraction pattern.

Direction 

The property of a vector that distinguishes it from a scalar: while scalars have only a 

magnitude, vectors have both a magnitude and a direction. When graphing vectors in the xy-
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coordinate space, direction is usually given by the angle measured counterclockwise from the x-

axis to the vector.

Directly proportional 

Two quantities are directly proportional if an increase in one results in a proportional increase 

in the other, and a decrease in one results in a proportional decrease in the other. In a formula 

defining a certain quantity, those quantities to which it's directly proportional will appear in the 

numerator.

Dispersion 

The separation of different color light via refraction. 

Displacement 

A vector quantity, commonly denoted by the vector s, which reflects an object’s change in 

spatial position. The displacement vector points from the object’s starting position to the 

object’s current position in space. If an object is moved from point A to point B in space along 

path AB, the magnitude of the object’s displacement is the separation of points A and B. Note 

that the path an object takes to get from point A to point B does not figure when deining 

displacement.

Distance 

A scalar quantity. If an object is moved from point A to point B in space along path AB, the 

distance that the object has traveled is the length of the path AB. Distance is to be contrasted 

with displacement, which is simply a measure of the distance between points A and B, and 

doesn’t take into account the path followed between A and B.

Doppler shift 

Waves produced by a source that is moving with respect to the observer will seem to have a 

higher frequency and smaller wavelength if the motion is towards the observer, and a lower 

frequency and longer wavelength if the motion is away from the observer. The speed of the 

waves is independent of the motion of the source.

Dot product 

A form of vector multiplication, where two vectors are multiplied to produce a scalar. The dot 

product of two vectors, A and B, is expressed by the equation A · B = AB cos .

Dynamics 

The application of kinematics to understand why objects move the way they do. More precisely, 

dynamics is the study of how forces cause motion.

E–H

E
Efficiency 

For a heat engine, the ratio of work done by the engine to heat intake. Efficiency is never 100%.

Elastic collision 

A collision in which both kinetic energy and momentum are conserved.

Electric generator 

A device that converts mechanical energy to electrical energy by rotating a coil in a magnetic 

field; sometimes called a “dynamo.”

Electromagnetic induction 

The property by which a charge moving in a magnetic field creates an electric field. 
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Electromagnetic spectrum 

The spectrum containing all the different kinds of electromagnetic waves, ranging in 

wavelength and frequency.

Electromagnetic wave 

A transverse traveling wave created by the oscillations of an electric field and a magnetic field. 

Electromagnetic waves travel at the speed of light, m/s. Examples include 

microwaves, X rays, and visible light.

Electron 

A negatively charged particle that orbits the nucleus of the atom.

Electronvolt 

A unit of measurement for energy on atomic levels. 1 eV = J.

Energy 

A conserved scalar quantity associated with the state or condition of an object or system of 

objects. We can roughly define energy as the capacity for an object or system to do work. There 

are many different types of energy, such as kinetic energy, potential energy, thermal energy, 

chemical energy, mechanical energy, and electrical energy.

Entropy 

The disorder of a system.

Equilibrium 

The state of a nonrotating object upon whom the net torque acting is zero.

Equilibrium position 

The stable position of a system where the net force acting on the object is zero. 

F
Faraday’s Law 

A law, | | = , which states that the induced emf is the change in magnetic flux in a 

certain time.

First Law of Thermodynamics 

Essentially a restatement of energy conservation, it states that the change in the internal energy 

of a system is equal to the heat added plus the work done on the system.

Focal length 

The distance between the focal point and the vertex of a mirror or lens. For concave mirrors 

and convex lenses, this number is positive. For convex mirrors and concave lenses, this number 

is negative.

Focal point 

The point of a mirror or lens where all light that runs parallel to the principal axis will be 

focused. Concave mirrors and convex lenses are designed to focus light into the focal point. 

Convex mirrors and concave lenses focus light away from the focal point.

Force 

A push or a pull that causes an object to accelerate.

Free-body diagram 
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Illustrates the forces acting on an object, drawn as vectors originating from the center of the 

object.

Frequency 

The number of cycles executed by a system in one second. Frequency is the inverse of period, f  

= 1/T. Frequency is measured in hertz, Hz.

Frictional force 

A force caused by the roughness of two materials in contact, deformations in the materials, and 

a molecular attraction between the materials. Frictional forces are always parallel to the plane 

of contact between two surfaces and opposite the direction that the object is being pushed or 

pulled. 

Fundamental 

The standing wave with the lowest frequency that is supported by a string with both ends tied 

down is called the fundamental, or resonance, of the string. The wavelength of the fundamental 

is twice the length of the string, .

G
Gamma decay 

A form of radioactivity where an excited atom releases a photon of gamma radiation, thereby 

returning to a lower energy state. The atomic structure itself does not change in the course of 

gamma radiation.

Gamma ray 

An electromagnetic wave of very high frequency.

Gold foil experiment 

An experiment by Ernest Rutherford that proved for the first time that atoms have nuclei.

Gravitational constant 

The constant of proportionality in Newton’s Law of Gravitation. It reflects the proportion of the 

gravitational force and , the product of two particles’ masses divided by the square 

of the bodies’ separation. N · m2/kg2.

Gravitational Potential Energy 

The energy associated with the configuration of bodies attracted to each other by the 

gravitational force. It is a measure of the amount of work necessary to get the two bodies from a 

chosen point of reference to their present position. This point of reference is usually chosen to 

be a point of infinite distance, giving the equation . Objects of mass m that 

are a height h above the surface of the earth have a gravitational potential energy of 

.

Ground state 

In the Bohr model of the atom, the state in which an electron has the least energy and orbits 

closest to the nucleus.

H
Half-life 
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The amount of time it takes for one-half of a radioactive sample to decay.

Harmonic series 

The series of standing waves supported by a string with both ends tied down. The first member 

of the series, called the fundamental, has two nodes at the ends and one anti-node in the 

middle. The higher harmonics are generated by placing an integral number of nodes at even 

intervals over the length of the string. The harmonic series is very important in music.

Heat 

A transfer of thermal energy. We don’t speak about systems “having” heat, but about their 

“transferring” heat, much in the way that dynamical systems don’t “have” work, but rather “do” 

work.

Heat engine 

A machine that operates by taking heat from a hot place, doing some work with that heat, and 

then exhausting the rest of the heat into a cool place. The internal combustion engine of a car is 

an example of a heat engine.

Heat transfer 

A transfer of thermal energy from one system to another.

Hertz (Hz) 

The units of frequency, defined as inverse-seconds (1 Hz = 1 s–1). “Hertz” can be used 

interchangeably with “cycles per second.”

Hooke’s Law 

For an oscillating spring, the restoring force exerted by the spring is directly proportional to the 

displacement. That is, the more the spring is displaced, the stronger the force that will pull 

toward the equilibrium position. This law is expressed mathematically as F = –kx, where F is 

the restoring force and x is the displacement. The constant of proportionality, –k, is the spring 

constant.

Hypotenuse 

The longest side of a right triangle, opposite to the right angle.

I–L

I
Ideal gas law 

An equation, PV = nRT, that relates the pressure, volume, temperature, and quantity of an ideal 

gas. An ideal gas is one that obeys the approximations laid out in the kinetic theory of gases.

Impulse 

A vector quantity defined as the product of the force acting on a body multiplied by the time 

interval over which the force is exerted.

Incident ray 

When dealing with reflection or refraction, the incident ray is the ray of light before it strikes 

the reflecting or refracting surface.

Inclined plane 

A wedge or a slide. The dynamics of objects sliding down inclined planes is a popular topic on 

SAT II Physics.

Index of refraction 
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The index of refraction n = c/v of a substance characterizes the speed of light in that substance, 

v. It also characterizes, by way of Snell's Law, the angle at which light refracts in that substance.

Induced current 

The current induced in a circuit by a change in magnetic flux.

Inelastic collision 

A collision in which momentum is conserved but kinetic energy is not.

Inertia 

The tendency of an object to remain at a constant velocity, or its resistance to being accelerated. 

Newton’s First Law is alternatively called the Law of Inertia because it describes this tendency.

Inertial reference frame 

A reference frame in which Newton’s First Law is true. Two inertial reference frames move at a 

constant velocity relative to one another. According to the first postulate of Einstein’s theory of 

special relativity, the laws of physics are the same in all inertial reference frames.

Instantaneous velocity 

The velocity at any given instant in time. To be contrasted with average velocity, which is a 

measure of the change in displacement over a given time interval.

Internal energy 

The energy stored in a thermodynamic system.

Inversely proportional 

Two quantities are inversely proportional if an increase in one results in a proportional 

decrease in the other, and a decrease in one results in a proportional increase in the other. In a 

formula defining a certain quantity, those quantities to which it's inversely proportional will 

appear in the denominator.

Isolated system 

A system that no external net force acts upon. Objects within the system may exert forces upon 

one another, but they cannot receive any impulse from outside forces. Momentum is conserved 

in isolated systems.

Isotope 

Atoms of the same element may have different numbers of neutrons and therefore different 

masses. Atoms of the same element but with different numbers of neutrons are called isotopes 

of the same element.

J
Joule 

The joule (J) is the unit of work and energy. A joule is 1 N · m or 1 kg · m2/s2.

K
Kelvin 

A scale for measuring temperature, defined such that 0K is the lowest theoretical temperature a 

material can have. 273K = 0ºC.

Kepler’s First Law 

The path of each planet around the sun is an ellipse with the sun at one focus.

Kepler’s Second Law 

If a line is drawn from the sun to the planet, then the area swept out by this line in a given time 

interval is constant.

Kepler’s Third Law 
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Given the period, T, and semimajor axis, a, of a planet’s orbit, the ratio is the same for 

every planet.

Kinematic equations 

The five equations used to solve problems in kinematics in one dimension with uniform 

acceleration.

Kinematics 

Kinematics is the study and description of the motion of objects.

Kinetic energy 

Energy associated with the state of motion. The translational kinetic energy of an object is given 

by the equation .

Kinetic friction 

The force between two surfaces moving relative to one another. The frictional force is parallel 

to the plane of contact between the two objects and in the opposite direction of the sliding 

object’s motion.

Kinetic theory of gases 

A rough approximation of how gases work, that is quite accurate in everyday conditions. 

According to the kinetic theory, gases are made up of tiny, round molecules that move about in 

accordance with Newton’s Laws, and collide with one another and other objects elastically. We 

can derive the ideal gas law from the kinetic theory.

L
Latent heat of fusion 

The amount of heat necessary to transform a solid at a given temperature into a liquid of the 

same temperature, or the amount of heat needed to be removed from a liquid of a given 

temperature to transform it into a solid of the same temperature.

Latent heat of sublimation 

The amount of heat necessary for a material undergoing sublimation to make a phase change 

from gas to solid or solid to gas, without a change in temperature.

Latent heat of transformation 

The amount heat necessary to cause a substance to undergo a phase transition.

Latent heat of vaporization 

The amount of heat necessary to transform a liquid at a given temperature into a gas of the 

same temperature, or the amount of heat needed to be taken away from a gas of a given 

temperature to transform it into a liquid of the same temperature.

Law of conservation of energy 

Energy cannot be made or destroyed; energy can only be changed from one place to another or 

from one form to another.

Law of reflection 

For a reflected light ray, . In other words, a ray of light reflects of a surface 

in the same plane as the incident ray and the normal, and at an angle to the normal that is 

equal to the angle between the incident ray and the normal.

Legs 
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The two shorter sides of a right triangle that meet at the right angle.

Lenz’s Law 

States that the current induced in a circuit by a change in magnetic flux is in the direction that 

will oppose that change in flux. Using the right-hand rule, point your thumb in the opposite 

direction of the change in magnetic flux. The direction your fingers curl into a fist indicates the 

direction of the current.

Longitudinal waves 

Waves that oscillate in the same direction as the propagation of the wave. Sound is carried by 

longitudinal waves, since the air molecules move back and forth in the same direction the 

sound travels.

Loudness 

The square of the amplitude of a sound wave is called the sound’s loudness, or volume.

M–P

M
Magnetic flux 

The dot product of the area and the magnetic field passing through it. Graphically, it is a 

measure of the number and length of magnetic field lines passing through that area. It is 

measured in Webers (Wb).

Magnification 

The ratio of the size of the image produced by a mirror or lens to the size of the original object. 

This number is negative if the image is upside-down.

Magnitude 

A property common to both vectors and scalars. In the graphical representation of a vector, the 

vector’s magnitude is equal to the length of the arrow.

Margin of error 

The amount of error that’s possible in a given measurement.

Mass 

A measurement of a body’s inertia, or resistance to being accelerated. 

Mass defect 

The mass difference between a nucleus and the sum of the masses of the constituent protons 

and neutrons.

Mass number 

The mass number, A, is the sum of the number of protons and neutrons in a nucleus. It is very 

close to the weight of that nucleus in atomic mass units.

Maxima 

In an interference or diffraction pattern, the places where there is the most light. 

Mechanical energy 

The sum of a system’s potential and kinetic energy. In many systems, including projectiles, 

pulleys, pendulums, and motion on frictionless surfaces, mechanical energy is conserved. One 

important type of problem in which mechanical energy is not conserved is the class of problems 

involving friction.

Medium 
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The substance that is displaced as a wave propagates through it. Air is the medium for sound 

waves, the string is the medium of transverse waves on a string, and water is the medium for 

ocean waves. Note that even if the waves in a given medium travel great distances, the medium 

itself remains more or less in the same place.

Melting point 

The temperature at which a material will change phase from solid to liquid or liquid to solid.

Meson 

A class of elementary particle whose mass is between that of a proton and that of an electron. A 

common kind of meson is the pion.

Michelson-Morley experiment 

An experiment in 1879 that showed that the speed of light is constant to all observers. Einstein 

used the results of this experiment as support for his theory of special relativity.

Minima 

In an interference or diffraction pattern, the places where there is the least light. 

Mole 

The number of hydrogen atoms in one gram of hydrogen, equal to . When 

counting the number of molecules in a gas, it is often convenient to count them in moles.

Moment of inertia 

A rigid body’s resistance to being rotated. The moment of inertia for a single particle is MR2, 

where M is the mass of the rigid body and R is the distance to the rotation axis. For rigid 

bodies, calculating the moment of inertia is more complicated, but it generally takes the form of 

a constant multiplied by MR2. 

Momentum 

Linear momentum, p, commonly called “momentum” for short, is a vector quantity defined as 

the product of an object’s mass, m, and its velocity, v. 

Motional emf 

The emf created by the motion of a charge through a magnetic field.

Mutual Induction 

The property by which a changing current in one coil of wire induces an emf in another.

N
Neutrino 

An almost massless particle of neutral charge that is released along with a beta particle in beta 

decay.

Neutron 

A neutrally charged particle that, along with protons, constitutes the nucleus of an atom.

Neutron number 

The number, N, of neutrons in an atomic nucleus.

Newton 

A unit of force: 1 N is equivalent to a 1 kg · m/s2.

Newton’s First Law 

An object at rest remains at rest, unless acted upon by a net force. An object in motion remains 

in motion, unless acted upon by a net force.

Newton’s Law of Universal Gravitation 
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The force of gravity, F, between two particles of mass and , separated by a distance r, 

has a magnitude of , where G is the gravitational constant. The force is 

directed along the line joining the two particles.

Newton’s Second Law 

F = ma. The net force, F, acting on an object causes the object to accelerate, a. The magnitude 

of the acceleration is directly proportional to the net force on the object and inversely 

proportional to the mass, m, of the object. 

Newton’s Third Law 

To every action, there is an equal and opposite reaction. If an object A exerts a force on another 

object B, B will exert on A a force equal in magnitude and opposite in direction to the force 

exerted by A.

Node 

The points on a standing wave where total destructive interference causes the medium to 

remain fixed at its equilibrium position. 

Normal 

The line perpendicular to a surface. There is only one normal for any given surface.

Normal force 

The reaction force of the ground, a table, etc., when an object is placed upon it. The normal 

force is a direct consequence of Newton’s Third Law: when an object is placed on the ground, 

the ground pushes back with the same force that it is pushed upon. As a result, the net force of 

an object on the ground is zero, and the object does not move.

Nuclear fission 

A nuclear reaction in which a high-energy neutron bombards a heavy, unstable atomic nucleus, 

causing it to split into two smaller nuclei, and releasing some neutrons and a vast amount of 

energy at the same time.

Nuclear fusion 

A nuclear reaction that takes place only at very high temperatures. Two light atoms, often 

hydrogen, fuse together to form a larger single atom, releasing a vast amount of energy in the 

process.

Nucleus 

The center of an atom, where the protons and neutrons reside. Electrons then orbit this 

nucleus.

O
Optics 

The study of the properties of visible light, i.e., the portion of the electromagnetic spectrum 

with wavelengths between 360 and 780 nm (1 nm = m/s).

Orbit 

When an object is held in circular motion about a massive body, like a planet or a sun, due to 

the force of gravity, that object is said to be in orbit. Objects in orbit are in perpetual free fall, 

and so are therefore weightless.

Oscillation 
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A back-and-forth movement about an equilibrium position. Springs, pendulums, and other 

oscillators experience harmonic motion.

P
Pascals 

The unit for measuring pressure. One Pascal is equal to one Newton per meter squared, 1 Pa = 1 

N/m2.

Pendulum 

A pendulum consists of a bob connected to a rod or rope. At small angles, a pendulum’s motion 

approximates simple harmonic motion as it swings back and forth without friction.

Period 

The time it takes a system to pass through one cycle of its repetitive motion. The period, T, is 

the inverse of the motion’s frequency, f = 1/T.

Phase 

Two oscillators that have the same frequency and amplitude, but reach their maximum 

displacements at different times, are said to have different phases. Similarly, two waves are in 

phase if their crests and troughs line up exactly, and they are out of phase if the crests of one 

wave line up with the troughs of the other.

Phase change 

When a solid, liquid, or gas changes into another phase of matter.

Photoelectric effect 

When electromagnetic radiation shines upon a metal, the surface of the metal releases 

energized electrons. The way in which these electrons are released contradicts classical theories 

of electromagnetic radiation and supports the quantum view according to which 

electromagnetic waves are treated as particles.

Photoelectron 

The name of an electron released from the surface of a metal due to the photoelectric effect.

Photon 

A small particle-like bundle of electromagnetic radiation.

Pitch 

Another word for the frequency of a sound wave.

Planck’s constant 

A constant, J · s, which is useful in quantum physics. A second constant 

associated with Planck’s constant is .

Polarization 

A process that aligns a wave of light to oscillate in one dimension rather than two.

Potential energy 

Energy associated with an object’s position in space, or configuration in relation to other 

objects. This is a latent form of energy, where the amount of potential energy reflects the 

amount of energy that potentially could be released as kinetic energy or energy of some other 

form.

Power 
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Defined as the rate at which work is done, or the rate at which energy is transformed. P is 

measured in joules per second (J/s), or watts (W).

Pressure 

A measure of force per unit area. Pressure is measured in N/m2 or Pa.

Principal axis 

The straight line that runs through the focal point and the vertex of a mirror or lens.

Proton 

A positively charged particle that, along with the neutron, occupies the nucleus of the atom.

Pulley 

A pulley is a simple machine that consists of a rope that slides around a disk or block.

Q–T

Q
Quark 

The building blocks of all matter, quarks are the constituent parts of protons, neutrons, and 

mesons.

R
Radian 

A unit for measuring angles; also called a “rad.” 2π rad = 360º.

Radiation 

Heat transfer via electromagnetic waves.

Radioactive decay 

The process by which unstable nuclei spontaneously release particles and/or energy so as to 

come to a more stable arrangement. The most common forms of radioactive decay are alpha 

decay, beta decay, and gamma decay.

Radioactivity 

An object is called radioactive if it undergoes radioactive decay.

Radius of curvature 

With spherical mirrors, the radius of the sphere of which the mirror is a part.

Rarefaction 

An area of high air pressure that acts as the wave trough for sound waves. The spacing between 

successive rarefactions is the wavelength of sound, and the number of successive areas of 

rarefaction that arrive at the ear per second is the frequency, or pitch, of the sound.

Real image 

An image created by a mirror or lens in such a way that light does actually come from where the 

image appears to be. If you place a screen in front of a real image, the image will be projected 

onto the screen.

Reflect 

A wave on a string that is tied to a pole at one end will reflect back toward its source, producing 

a wave that is the mirror-image of the original and which travels in the opposite direction.

Reflected ray 

The ray of light that is reflected from a mirror or other reflecting surface.

Reflection 

The phenomenon of light bouncing off a surface, such as a mirror.
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Refracted ray 

The ray of light that is refracted through a surface into a different medium.

Refraction 

The bending of light as it passes from one medium to another. Light refracts toward the normal 

when going from a less dense medium into a denser medium and away from the normal when 

going from a denser medium into a less dense medium.

Restoring force 

The force that causes simple harmonic motion. The restoring force is always directed toward an 

object’s equilibrium position.

Right-hand rule 

A means of defining the direction of the cross product vector. To define the direction of the 

vector , position your right hand so that your fingers point in the direction of A, and 

then curl them around so that they point in the direction of B. The direction of your thumb 

shows the direction of the cross product vector.

Rigid body 

An object that retains its overall shape, meaning that the particles that make up the rigid body 

stay in the same position relative to one another.

Rotational kinetic energy 

The energy of a particle rotating around an axis.

Rotational motion 

Occurs when every point in the rigid body moves in a circular path around a line called the axis 

of rotation.

Rutherford nuclear model 

The model of the atom according to which negatively charged electrons orbit a positively 

charged nucleus. This model was developed by Ernest Rutherford in light of the results from 

his gold foil experiment.

S
Scalar 

A quantity that possesses a magnitude but not a direction. Mass and length are common 

examples.

Second Law of Thermodynamics 

There are a few versions of this law. One is that heat flows spontaneously from hot to cold, but 

not in the reverse direction. Another is that there is no such thing as a 100% efficient heat 

engine. A third states that the entropy, or disorder, of a system may increase but will never 

decrease spontaneously.

Significant digits 

The number of digits that have been accurately measured. When combining several 

measurements in a formula, the resulting calculation can only have as many significant digits 

as the measurement that has the smallest number of significant digits.

Simple harmonic oscillator 

An object that moves about a stable equilibrium point and experiences a restoring force that is 

directly proportional to the oscillator’s displacement.

Sine 
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In a right triangle, the sine of a given angle is the length of the side opposite the angle divided 

by the length of the hypotenuse.

Snell’s Law 

Relates the angle of incidence to the angle of refraction: .

Sound 

Waves carried by variations in air pressure. The speed of sound waves in air at room 

temperature and pressure is roughly 343 m/s.

Specific heat 

The amount of heat of a material required to raise the temperature of either one kilogram or 

one gram of that material by one degree Celsius. Different units may be used depending on 

whether specific heat is measured in s of grams or kilograms, and joules or calories.

Spectroscope 

A device that breaks incoming light down into spectral rays, so that one can see the exact 

wavelength constituents of the light.

Speed 

A scalar quantity that tells us how fast an object is moving. It measures the rate of change in 

distance over time. Speed is to be contrasted with velocity in that there is no direction 

associated with speed.

Spring 

Objects that experience oscillatory or simple harmonic motion when distorted. Their motion is 

described by Hooke’s Law.

Spring constant 

Indicates how “bouncy” or “stiff” a spring is. More specifically, the spring constant, k, is the 

constant of proportionality between the restoring force exerted by the spring, and the spring’s 

displacement from equilibrium. The greater the value of k, more resistant the spring is to being 

displaced.

Standing wave 

A wave that interferes with its own reflection so as to produce oscillations which stand still, 

rather than traveling down the length of the medium. Standing waves on a string with both 

ends tied down make up the harmonic series. 

Static friction 

The force between two surfaces that are not moving relative to one another. The force of static 

friction is parallel to the plane of contact between the two objects and resists the force pushing 

or pulling on the object.

Strong nuclear force 

The force that binds protons and neutrons together in the atomic nucleus.

Sublimation 

The process by which a solid turns directly into gas, because it cannot exist as a liquid at a 

certain pressure.

Superposition 

The principle by which the displacements from different waves traveling in the same medium 

add up. Superposition is the basis for interference.

System 
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A body or set of bodies that we choose to analyze as a group.

T
Tail 

In the graphical representation of vectors, the tail of the arrow is the blunt end (the end without 

a point).

Tangent 

In a right triangle, the tangent of a given angle is the length of the side opposite the angle 

divided by the length of the side adjacent to the triangle.

Temperature 

A measure of the average kinetic energy of the molecules in a system. Temperature is related to 

heat by the specific heat of a given substance.

Tension force 

The force transmitted along a rope or cable.

Thermal energy 

The energy of the molecules that make up an object. It is related to heat, which is the amount of 

energy transferred from one object to another object that is a different temperature.

Thermal equilibrium 

Two materials are in thermal equilibrium if they are at the same temperature.

Third Law of Thermodynamics 

An object cannot be cooled to absolute zero.

Threshold frequency 

A property of a metal, the minimum frequency of electromagnetic radiation that is necessary to 

release photoelectrons from that metal.

Tip 

In the graphical representation of vectors, the tip of the arrow is the pointy end.

Torque 

The effect of force on rotational motion.

Total internal reflection 

The phenomenon by which light traveling from a high n to a low n material will reflect from the 

optical interface if the incident angle is greater than the critical angle.

Transformer 

A device made of two coils, which converts current of one voltage into current of another 

voltage. In a step-up transformer, the primary coil has fewer turns than the secondary, thus 

increasing the voltage. In a step-down transformer, the secondary coil has fewer turns than the 

primary, thus decreasing the voltage.

Translational kinetic energy 

The energy of a particle moving in space. It is defined in s of a particle’s mass, m, and velocity, 

v, as (1/2)mv2.

Translational motion 

The movement of a rigid body’s center of mass in space. 

Transverse waves 

Waves in which the medium moves in the direction perpendicular to the propagation of the 

wave. Waves on a stretched string, water waves, and electromagnetic waves are all examples of 

transverse waves.
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Traveling waves 

A wave with wave crests that propagate down the length of the medium, in contrast to 

stationary standing waves. The velocity at which a crest propagates is called the wave speed.

Trough 

The points of maximum negative displacement along a wave. They are the opposite of wave 

crests.

U–Z

U
Uncertainty principle 

A principle derived by Werner Heisenberg in 1927 that tells us that we can never know both the 

position and the momentum of a particle at any given time.

Uniform circular motion 

The motion of a body in a circular path with constant speed.

Unit vector 

A unit vector is a vector with length 1.

Universal gas constant 

Represented by R = 8.31 J/mol · K, the universal gas constant fits into the ideal gas law so as to 

relate temperature to the average kinetic energy of gas molecules.

V
Vector 

A vector quantity, or vector, is an object possessing, and fully described by, a magnitude and a 

direction. Graphically a vector is depicted as an arrow with its magnitude given by the length of 

the arrow and its direction given by where the arrow is pointing.

Velocity 

A vector quantity defined as the rate of change of the displacement vector with time. It is to be 

contrasted with speed, which is a scalar quantity for which no direction is specified.

Vertex 

The center of a mirror or lens.

Virtual image 

An image created by a mirror or lens in such a way that light does not actually come from where 

the image appears to be.

W
Wave 

A system with many parts in periodic, or repetitive, motion. The oscillations in one part cause 

vibrations in nearby parts.

Wave speed 

The speed at which a wave crest or trough propagates. Note that this is not the speed at which 

the actual medium (like the stretched string or the air particles) moves. 

Wavelength 

The distance between successive wave crests, or troughs. Wavelength is measured in meters 

and is related to frequency and wave speed by = v/f.

Weak nuclear force 
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The force involved in beta decay that changes a proton to a neutron and releases an electron 

and a neutrino.

Weber 

The unit of magnetic flux, equal to one T · m2.

Weight 

The gravitational force exerted on a given mass.

Weightlessness 

The experience of being in free fall. If you are in a satellite, elevator, or other free-falling object, 

then you have a weight of zero Newtons relative to that object.

Work 

Done when energy is transferred by a force. The work done by a force F in displacing an object 

by s is W = F · s.

Work function 

The amount of energy that metal must absorb before it can release a photoelectron from the 

metal.

Work-energy theorem 

States that the net work done on an object is equal to the object’s change in kinetic energy.

Z
Zeroth Law of Thermodynamics 

If two systems, A and B, are in thermal equilibrium and if B and C are also in thermal 

equilibrium, then systems A and C are necessarily in thermal equilibrium.

Practice Tests Are Your Best Friends

BELIEVE IT OR NOT, SAT II PHYSICS HAS some redeeming qualities. One of them is 

reliability. The test doesn’t change much from year to year. While individual questions 

will never repeat from test to test, the topics that are covered and the way in which they’re 

covered will remain constant. This constancy can be of great benefit to you as you study 

for the test.

Taking Advantage of the Test’s Regularity

Imagine an eleventh grader named Molly Bloom sits down at the desk in her room and 

takes an SAT II Physics practice test. She’s a very bright young woman and gets only one 

question wrong. Molly checks her answers and then jumps from her chair and does a 

little dance that would be embarrassing if anyone else were around to see her.

After Molly’s understandable euphoria passes, she begins to wonder which question she 

got wrong. She discovers that the question dealt with optics. Looking over the question, 

Molly at first thinks the test writers made a mistake and that she was right, but then she 

realizes that she answered the question wrong because she had assumed the focal point of 

a diverging lens would have a positive value, when in fact it has a negative value. In 

thinking about the question, Molly realizes she didn’t have a good grasp on which kinds 

of mirrors and lenses have which kinds of focal points. She studies up on her optics, sorts 

out why the focal point of a diverging lens must have a negative value, and memorizes 
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what kinds of optical instruments have what kinds of focal points. All this takes her about 

ten minutes, after which she vows never again to make a mistake on a question involving 

optics.

Analyzing Molly Bloom
Molly wasn’t content simply to see what the correct answer was and get on with her day; 

she wanted to see how and why she got the question wrong and what she should have 

done, or needed to know, in order to get it right. So, she spent a little time studying the 

question, discovering her mistaken understanding of diverging lenses, and nailing down 

the principles behind the situation. If Molly were to take that same test again, she 

definitely would not get that question wrong.

Skeptical readers might say, “But she never will take that test again, and she’ll never see 

that question again, so wasn’t figuring out her mistake a waste of time?”

No! It’s definitely not a waste of time. Remember that the test is remarkably similar from 

year to year—both in the topics it covers and in the way it poses questions about those 

topics. Therefore, when Molly taught herself about optics, she actually learned how to 

answer similar questions dealing with converging lenses and concave and convex mirrors, 

which will undoubtedly appear on every future practice test and on the real SAT II 

Physics. 

In studying the results of her practice test, in figuring out exactly why she got her one 

question wrong and what she should have known and done to get it right, Molly has 

targeted a weakness and overcome it. 

If you take the time to learn why you got a question wrong and to learn the material you 

need to know to get it right, you’ll probably remember what you learned the next time 

you’re faced with a similiar question. And chances are excellent that you will be faced 

with a similar question. 

Molly and You
What if you take a practice test and get fifteen questions wrong, and your errors span all 

the major topics in physics? In that case, you should still do exactly what Molly did: take 

your test and study it. Identify every question you got wrong, figure out why you got it 

wrong, and then teach yourself what you should have done to get the question right. If 

you can’t figure out your error, find someone who can.

A wrong answer identifies a weakness in your test taking, whether that weakness is an 

unfamiliarity with a particular topic or a tendency to be careless. If you got fifteen 

questions wrong on a practice test, then each of those fifteen questions identifies a 

weakness in your ability to take SAT II Physics or your knowledge about the topics on the 

SAT II Physics Tests. But as you study each question you got wrong, you are actually 

learning how to answer the very questions that will appear in similar form on the real 

SAT II Physics. You are discovering your exact weakness in physics and addressing them, 

and you are learning to understand not just the principles you’re being tested on but also 

the way that ETS will test you. 

True, if you got fifteen questions wrong, studying your first practice test will take time. 

But if you invest that time and study your practice test properly, you will be eliminating 

future mistakes. Each successive practice test you take should have fewer errors, meaning 

you’ll need to spend less time studying those errors. Also, and more important, you’ll be 
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pinpointing what you need to study for the real SAT II Physics, identifying and 

overcoming your weaknesses, and learning to answer an increasing variety of questions 

on the specific topics covered by the test. Taking practice tests and studying them will 

allow you to teach yourself how to recognize and handle whatever SAT II Physics throws 

at you.

Taking a Practice Test

Through Molly Bloom, we’ve shown you why studying practice tests is an extremely 

powerful strategy. Now we’re going to backtrack and show you exactly how to deploy that 

strategy. 

Controlling Your Environment
Although a practice test is practice, and no one but you ever needs to see your scores, you 

should do everything in your power to make the practice test feel like the real SAT II 

Physics. The closer your practice resembles the real thing, the more helpful it will be. 

When taking a practice test, follow these rules:

• Time Yourself: Don’t give yourself any extra time. Be stricter with yourself than 

the meanest proctor you can think of. Don’t give yourself time off for bathroom 

breaks. If you have to go to the bathroom, let the clock keep running; that’s what 

will happen on the real SAT II Physics. 

• Take the Test in a Single Sitting: Training yourself to endure an hour of test 

taking is part of your preparation. 

• Eliminate Distractions: Don’t take the practice test in a room with lots of 

people walking through it. Go to a library, your bedroom, a well-lit closet—

anywhere quiet.

Following these guidelines will help you to concentrate better and speed you toward your 

target score. However, don’t be discouraged if you find these rules too strict; you can 

always bend a few. Preparing for SAT II Physics should not be torturous! Do whatever 

you have to do in order to make sure your studying is interesting and painless enough 

that you will actually do it.

Ultimately, if you can follow all of the above rules to the letter, you will probably be better 

off. But if following those rules makes studying excruciating, find little ways to bend them 

that won’t interfere too much with your concentration.

Practice Test Strategy 
You should take the test as if it were the real deal: go for the highest score you can get. 

This doesn’t mean you should be more daring than you would be on the actual test, 

guessing blindly even when you can’t eliminate an answer. It doesn’t mean that you 

should speed through the test carelessly. The more closely your attitude and strategies 

during the practice test reflect those you’ll employ during the actual test, the more 

accurately the practice test will reflect your strengths and weaknesses: you’ll learn what 

areas you should study and how to pace yourself during the test.
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Scoring Your Practice Test

After you take your practice test, you’ll no doubt want to score it and see how you did. But 

don’t just tally up your raw score. As a part of your scoring, you should keep a precise list 

of every question you got wrong and every question you skipped. This list will be your 

guide when you study your test. 

Studying Your… No, Wait, Go Take a Break

You know how to have fun. Go do that for a while. Then come back when you’re 

refreshed.

Studying Your Practice Test

After grading your test, you should have a list of the questions you answered incorrectly 

or skipped. Studying your test involves going down this list and examining each question 

you answered incorrectly. Make sure not just to learn the right answer but also to 

understand why you got the question wrong and what you could have done to get the 

question right.

Why Did You Get the Question Wrong?
There are three main reasons why you might have gotten an individual question wrong.

1. You thought you knew the answer, but, actually, you didn’t. 

2. You couldn’t answer the question directly, but you knew the general principles 

involved. Using this knowledge, you managed to eliminate some answer choices 

and then guessed among the remaining answers; sadly, you guessed incorrectly. 

3. You knew the answer but somehow made a careless mistake.

You should know which of these reasons applies to every question you got wrong. 

What You Could Have Done to Get the Question Right 
If You Got a Question Wrong for Reason 1 or 2: Lack of Knowledge

Reasons (1) and (2) are variants of one another, and there is a pretty smooth continuum 

that runs between them. Both result from a lack of knowledge of some of the principles of 

physics. Discovering a wrong answer in this domain gives you an opportunity to target 

your weakness. When addressing that weakness, make sure that you don’t just look at the 

facts. For example, if you got a question wrong that dealt with resistors in parallel, don’t 

just memorize the rule for calculating the total resistance of a set of resistors in parallel. 

Ultimately, you want to understand why that rule is the way it is. And don’t stop there. 

You should next review resistors in series and DC circuits in general. Make sure you’re 

comfortable with Kirchhoff’s Rules: they’re useful in sorting out how current and voltage 

work in a circuit. 

When studying the questions you got wrong, always remember that it’s important to 

focus on the essence of each question and to understand the principles that would lead 

you to a correct answer on similar questions.
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If you got a question wrong because of an incorrect guess, review your guessing strategy. 

Did you guess smartly? Could you have eliminated more answers? If yes, why didn’t you? 

By thinking in this critical way about the decisions you made while taking the test, you 

can train yourself to make quicker, more decisive, and better decisions. 

If You Got a Question Wrong for Reason 3: Carelessness

If you discover you got a question wrong because you were careless, it might be tempting 

to say to yourself, “Oh I made a careless error,” and assure yourself you won’t do that 

again. That is not enough. You made that careless mistake for a reason, and you should 

try to figure out why. While getting a question wrong because you didn’t know the answer 

constitutes a weakness in your knowledge about the test subject, making a careless 

mistake represents a weakness in your method of taking the test. 

To overcome this weakness, you need to approach it in the same critical way you would 

approach a lack of knowledge. Study your mistake. Reenact your thought process on the 

problem and see where and how your carelessness came about. Were you rushing? Did 

you jump at the first answer that seemed right instead of reading all the answers? Know 

your error, and look it in the eye. If you learn precisely what your mistake was, you are 

much less likely to make that mistake again. 

If You Left a Question Blank
It is also a good idea to study the questions you left blank on the test, since those 

questions constitute a reservoir of lost points. A blank answer is a result either of (1) a 

total inability to answer a question or (2) a lack of time.

If you left a question blank for reason 1, you should see if there was some way you might 

have been able to eliminate an answer choice or two and put yourself in a better position 

to guess. You should also make a particular point to study up on that topic in physics, 

since you clearly have a good deal of trouble with it. 

In the second case, look over the question and see whether you think you could have 

answered it. If you definitely could have, then you know that you are throwing away 

points by working too slowly. If you couldn’t, then carry out the above steps: study the 

relevant material and review your guessing strategy. 

The Secret Weapon: Talking to Yourself

Yes, it’s embarrassing. Yes, you may look silly. But talking to yourself is perhaps the best 

way to pound something into your brain. As you go through the steps of studying a 

question, you should talk them out. When you verbalize something, it’s much harder to 

delude yourself into thinking that you’re working if you’re really not. 
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